
DOT/FAA/TC-21/48 Neural Network Based
Federal Aviation Administration Runway Landing
William J. Hughes Technical Center

Aviation Research Division Guidance for General Atlantic City International Airport

New Jersey 08405 Aviation Autoland

November 27, 2021

Technical Report

This document is available to the U.S. public through

the National Technical Information Services (NTIS),

Springfeld, Virginia 22161.

This document is also available from the Federal Avia-

tion Administration William J. Hughes Technical Center at

actlibrary.tc.faa.gov.

U.S. Department of Transportation

Federal Aviation Administration

https://www.faa.gov/about/office_org/headquarters_offices/ang/offices/tc/library/

NOTICE

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest

of information exchange. The U.S. Government assumes no liability for the contents or use thereof. The U.S.

Government does not endorse products or manufacturers. Trade or manufacturers’ names appear herein solely

because they are considered essential to the objective of this report. The fndings and conclusions in this

report are those of the author(s) and do not necessarily represent the views of the funding agency. This

document does not constitute FAA policy. Consult the FAA sponsoring organization listed on the Technical

Documentation page as to its use.

This report is available at the Federal Aviation Administration William J. Hughes Technical Center’s Full-Text

Technical Reports page: tc.faa.gov in Adobe Acrobat portable document format (PDF).

https://www.faa.gov/about/office_org/headquarters_offices/ang/offices/tc

Technical Report Documentation Page

1. Report No.

DOT/FAA/TC-21/48

2. Government Accession No. 3. Recipient Catalog No.

4. Title and Subtitle

Neural Network Based Runway Landing Guidance for General Avia-

tion Autoland

5. Report Date

November 27, 2021

6. Performing Organization Code

7. Authors

Giovanni Balduzzi, Martino Ferrari Bravo, Anna Chernova, Calin

Cruceru, Luuk van Dijk, Peter de Lange, Juan Jerez, Nathanaël

Koehler, Mathias Koerner, Corentin Perret-Gentil, Zoltan Pillio,

Ruben Polak, Hugo Silva, Romeo Valentin, Ian Whittington, Grig-

ory Yakushev

8. Performing Organization Report No.

9. Performing Organization Name and Address

Daedalean AG

Albisriederstrasse 199

8047 Zurich

Switzerland

10. Work Unit No. (TRAIS)

11. Contract Grant No.

692M15-20-H-00002

12. Sponsoring Agency Name and Address

Federal Aviation Administration

William J. Hughes Technical Center

Aviation Research Division

Atlantic City International Airport

New Jersey 08405

13. Type of Report and Period

Covered

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

The results of a year-long research project on a vision-based runway landing guidance system
based on Artificial Intelligence / Machine Learning / Neural Networks are presented in this
report. An in-depth presentation of the system is provided, followed by an analysis of its
performance on flight tests and through the W-shaped process for learning assurance.

17. Key Words

Artificial Intelligence, Machine Learning, Landing System,
Computer Vision

18. Distribution Statement

19. Security Classif. (report)

Unclassifed

20. Security Classif. (page)

Unclassifed

21. No. of pages

140

22. Price

Form DOT F 1700.7 (8-72)

Contents

Executive summary 10

1 Introduction 11

1.1 Goals and scope of the project . 11

1.2 System overview . 13

1.3 Project outcomes . 15

1.4 Current works on machine learning in safety-critical applications 15

2 The W-shaped process for learning assurance 21

2.1 Machine learning and generalization . 22

2.2 Overview of the W-shaped process . 26

2.3 Details on the W-shaped process steps . 27

3 Use cases and Concepts of operations 33

3.1 Use cases . 33

3.2 Operating Limits . 33

3.3 Concepts of Operations (ConOps) . 36

4 Flight test campaign 38

4.1 Flight test setup . 38

4.2 Evaluation results . 40

5 System design 45

5.1 Overview . 45

5.2 Runway extractor neural network . 46

5.3 Out-of-distribution detection . 50

5.4 Pose converter . 53

5.5 Filtering and tracking . 53

6 Application of the W-shaped process 55

6.1 Requirements management . 55

6.2 Data management . 57

6.3 Learning process management . 65

6.4 Model training . 68

6.5 Learning process verifcation . 71

6.6 Model implementation . 79

6.7 Inference model verifcation and integration . 80

6.8 Independent data and learning verifcation . 80

6.9 Requirements verifcation . 80

7 Learning assurance as part of a system 81

7.1 Allocation of system requirements . 81

4

7.2 Plan for Learning Aspects of Certifcation (PLAC) . 83

7.3 Mapping the W-shaped process to DO-178C objectives . 83

8 Safety assessment 87

8.1 Functional hazard analysis . 87

8.2 Data coverage . 96

8.3 Neural network performance . 100

8.4 Out-of-distribution detection . 108

8.5 Pose converter . 110

8.6 Pose fltering . 113

8.7 Runway tracking . 121

References 123

Appendix A Flight test results 129

Citing this report

Daedalean, Neural Network Based Runway Landing Guidance for General Aviation Autoland, November 2021.

@techreport–DDLNVLS,
author = –Daedalean˝,
title = –Neural Network Based Runway Landing Guidance for General Aviation Autoland˝,
institution = –Federal Aviation Administration˝
month = 11,
year = 2021,
˝

5

10

15

20

25

30

35

Figures

1 Development view of Daedalean’s Visual Landing System . 11

2 The W-shaped development process from [CoDANN20; CoDANN21]. 12

3 VLS system mounted on aircraft. 13

4 Relationship between AI Roadmap building blocks and AI trustworthiness 16

Tentative schedule from EASA’s AI roadmap, [EAS20b, Page 13]. 16

6 The G-34/WG-114 Joint International Committee program. 19

7 The V-shaped development process as described in [ED-79A/ARP4754A]. 21

8 Underftting and overftting. 23

9 Dataset management, development process and performance guarantees. 25

Machine learning generalization. 25

11 Learning and inference environments . 29

12 Concept of operations: sideway view. 35

13 Concept of operations: top-down view. 35

14 VLS development display. 38

Experimental Cessna C182 with camera mount. 39

16 Flight 1 altitude and horizontal profle. 41

17 Telemetry from Flight 1, Approach 1 . 42

18 Challenging conditions during approach Flight 2. Note that the camera uses fxed aperture and

a 5 ms limit to exposure, limiting the amount of light received by the system, so the system

display images appear darker compared to what was perceived by human eyes. 43

19 High-level overview of the Visual Landing System. 45

Runway camera image with corners obscured by trees. 47

21 Runway image parameters (predictions and ground truth) . 48

22 Description of the in-camera runway geometry. 48

23 Uncertainty decomposition. 49

24 Runway extractor model architecture. 51

Runways in various environmental conditions . 57

26 Various runway locations . 58

27 Sequence of artifacts culminating in an inference model. 60

28 Sample view of the annotation tool (CVAT). 62

29 Annotation inspection tool. 62

Real and synthetic data with post-processing . 64

31 Synthetic runway images. 64

32 Original image and augmentations . 67

33 Training curves for Experiment 1 . 69

34 Training curves for Experiment 2 . 69

Training curves for Experiment 3 . 70

36 Training curves for Experiment 4 . 70

37 Neural network errors . 72

6

40

45

50

55

60

65

70

75

80

85

38 Worst performance examples . 73

39 Perturbed runway crop with blurred squares, to compute sensitivity. 74

Perturbed runway crop with targeted patches, to compute sensitivity. 75

41 Local saliency heatmaps for a single approach from the Brno dataset. 76

42 Global saliency for a single approach from the Brno dataset. 76

43 Local saliency heatmaps for a single approach from the Buochs dataset. 77

44 Global saliency for a single approach from the Buochs dataset. 77

Local saliency heatmaps for a single approach from the Florida X59-10 dataset. 78

46 Global saliency for a single approach from the Florida X59-10 dataset. 78

47 Allocation of requirements to items. 82

48 FC1-2-2 (Loss of landing guidance function, not indicated) fault tree. 96

49 FC1-2-4 (Erroneous guidance while landing, not indicated) fault tree. 96

Training and validation data with respect to various positioning parameters. 97

51 Training and validation data with respect to various positioning parameters. 98

52 Training and validation data with respect to various location parameters. 99

53 Coverage ratio for the position operating parameters. 100

54 Mixture of Gaussians . 101

Marginal distributions of normalized errors . 103

56 Quantile-quantile plots of marginal normalized errors . 104

57 Mahalanobis distances distributions . 105

58 OOD score distribution. 108

59 Precision-recall curve for OOD detection . 109

False negative examples . 109

61 Sensitivity of distance with respect to the runway image parameters γ. 111

62 Sensitivity of altitude with respect to the runway image parameters γ. 112

63 Sensitivity of glide slope with respect to the runway image parameters γ. 112

64 Sensitivity of lateral deviation with respect to the runway image parameters γ. 113

System architecture: runway crop to fnal pose output . 114

66 Error time dependence . 115

67 Autocorrelation time of errors . 116

68 Sample random approaches (straight and curved) . 119

69 Outputs with unfltered neural network estimates. 120

Outputs with neural network estimates fltered with a Hull moving average. 120

71 Outputs with Kalman flter. 121

72 Precision and recall of a binary classifer . 122

73 Probability of not detecting a runway . 124

74 Mean time between lock interruptions . 124

Flight 1: Approaches 1-2 . 130

76 Flight 1: Approaches 3-4 . 131

77 Flight 1: Approaches 5-6 . 132

78 Flight 1: Approaches 7-8 . 133

79 Flight 1: Approaches 9-10 . 134

Flight 1: Approach 11 . 135

81 Flight 2: Approaches 1-2 . 136

82 Flight 2: Approaches 3-4 . 137

83 Flight 2: Approaches 5-6 . 138

84 Flight 2: Approaches 7-8 . 139

Flight 2: Approach 9 . 140

Tables

1 Outputs of the VLS system during fight phases. 14

2 Terminology for operating limits. 34

3 Concepts of Operations (ConOps) . 37

4 Runways used during the fight tests . 40

5 Sample Requirements . 56

6 Example of metrics . 65

7 DO-178C and learning assurance objectives . 84

7 DO-178C and learning assurance objectives . 85

7 DO-178C and learning assurance objectives . 86

8 Failure conditions - use case 1 . 90

8 Failure conditions - use case 1 . 91

8 Failure conditions - use case 1 . 92

9 Failure conditions - use case 2 . 92

9 Failure conditions - use case 2 . 93

9 Failure conditions - use case 2 . 94

10 FDAL allocation. 95

11 In-sample mean and variance of the errors, and resulting generalization guarantees 107

12 Integrated autocorrelation time of errors . 117

8

Acronyms

AI Artifcial Intelligence.

ASIC Application Specifc Integrated Circuit.

CFIT Controlled Flight Into Terrain.

CoDANN Concepts of Assurance for Design of Neural Net-

works.

ConOps Concepts of Operations.

COTS Commercial o� -the-shelf.

DoF Degrees of Freedom.

EASA European Aviation Safety Agency.

FAA Federal Aviation Administration.

FHA Functional Hazard Analysis.

FPGA Field Programmable Gate Array.

FTA Fault Tree Analysis.

GA General Aviation.

GNSS Global Navigation Satellite System.

GPS Global Positioning System.

GPU Graphics Processing Unit.

HMI Human-Machine Interface.

ILS Instrument Landing System.

IMU Inertial Measurement Unit.

IPC Innovation Partnership Contract.

MAE Mean Absolute Error.

ML Machine Learning.

NN Neural Networks.

NORSEE Non Required Safety Enhancing Equipment.

OOD Out-of-distribution.

PAPI Precision Approach Path Indicator.

PLAC Plan for Learning Aspects of Certifcation.

SSD Solid State Drive.

VFR Visual Flight Rules.

VLS Visual Landing System.

VMC Visual Meteorological Conditions.

9

Executive summary

This report is one of the main outcomes of a joint research project between Daedalean AG and the Federal

Aviation Administration, carried out between September 2020 and September 2021.

The subject of the project was the study of a fight-tested Visual Landing System (VLS) for fxed-wing aircraft

based on Artifcial Intelligence (AI)/Machine Learning (ML)/Neural Networks (NN).

Development view of Daedalean’s Visual Landing System (VLS),

providing landing guidance based on high-resolution camera images.

Following up on the two joint Concepts of Assurance for Design of Neural Networks (CoDANN)

reports [CoDANN20; CoDANN21] by the European Aviation Safety Agency (EASA) and Daedalean (2020,

2021), the goals were in particular to assess whether the VLS can serve for landing assistance in Part 91 GA

operations aircraft (including fight testing), evaluate whether the W-shaped Learning Assurance process —

one of the main outcomes of the CoDANN reports — can satisfy FAA intent for certifcation and development

processes, as well as inform future policy.

A detailed description of the VLS is presented, both on the level of concepts of operations, requirements and
technical implementation. Two uses cases are considered, as examples of di�erent levels of criticality: pilot

assistance and full autonomy.

Current work on the use of machine learning in safety-critical settings is surveyed. The W-shaped process is

reviewed, providing a compact summary of the two CoDANN reports, in addition to technical background on

supervised learning. A mapping of the process to DO-178C objectives is discussed, in addition to the

allocation and decomposition of system requirements.

The fight test campaign that took place in March 2021 in Florida, in the presence of FAA researchers, is
presented and analyzed. Standard landings and robustness tests of the systems were fown, with two fights and

eighteen approaches. The system performed well and failure cases were well understood.

The development of the VLS followed the W-shaped process, and this report contains a detailed overview of

the work carried out in each step, from data collection and learning process management to training, learning

process verifcation and independent data/learning verifcation.

A functional hazard analysis shows how the W-shaped process leads to performance guarantees of a system

using machine learning, exploring data requirements, generalization of neural networks, out-of-distribution

detection as well as the integration with traditional fltering and tracking. While limited due to scope, this provides

all the elements for a complete safety assessment.

Altogether, this project provided a detailed walk-through on the design and evaluation of a machine

learning-based system targeted to safety-critical applications.

�

1 Introduction

1.1 Goals and scope of the project

The subject of this report is a joint research project between Daedalean AG and the Federal Aviation

Administration (FAA) on the study of a real-world Visual Landing System (VLS) for fxed-wing aircraft based

on Artifcial Intelligence (AI)/Machine Learning (ML)/Neural Networks (NN), developed by Daedalean.

Similarly to the joint projects between the European Aviation Safety Agency (EASA) and

Daedalean [CoDANN20; CoDANN21], one of the goals of the work was to inform the development of future

certifcation policy.

The project was carried out between September 2020 and September 2021 with experts from the FAA and

Daedalean, including a series of fight tests in airports in Florida (USA) and Switzerland.

The Federal Aviation Administration (FAA) is an agency of the U.S. Department of Transportation whose

activities include regulating civil aviation to promote safety, encouraging and developing civil aeronautics,

including new aviation technology, developing and operating a system of air traÿc control and navigation for

both civil and military aircraft, researching and developing the National Airspace System and civil aeronautics,

developing and carrying out programs to control aircraft noise and other environmental e ects of civil aviation

and regulating U.S. commercial space transportation.

Daedalean AG is building autonomous fight control software for civil aircraft of today and advanced aerial

mobility of tomorrow. The Switzerland-based company has brought together expertise from the felds of

machine learning, robotics, computer vision, path planning as well as aviation-grade software engineering and

certifcation. Daedalean has partnered with incumbent avionics manufacturers including Honeywell Aerospace

and Avidyne to bring to market the frst-ever machine-learning based avionics. In addition to the Visual

Landing System illustrated in Figure 1, the company has developed an onboard visual awareness system

demonstrating crucial early capabilities on a path to certifcation for airworthiness.

Figure 1: Development view of Daedalean’s Visual Landing System (VLS), providing landing guidance based on

high-resolution camera images.

11

12 Daedalean / FAA VLS Project Report — Chapter 1

Background: CoDANN reports

The project builds on the Concepts of Assurance for Design of Neural Networks (CoDANN)

reports [CoDANN20; CoDANN21] released by the European Aviation Safety Agency (EASA) and Daedalean

in March 2020 and May 2021, following two Innovation Partnership Contract (IPC), a research, innovation

and industry engagement instrument of EASA.

The CoDANN reports analyzed the applicability of existing guidance such as [ED-79A/ARP4754A;

ED-12C/DO-178C] to systems using AI/ML/NNs, as well as gaps and possible mitigations. In addition to

in-depth discussions on these topics, a major outcome was the identifcation of a W-shaped development

process (see Figure 2) adapting the classical V-shaped cycle to applications using ML. The process is built

around the concept of Learning assurance and designed in such a way that following it will enable the ability to

provide performance guarantees for systems embedding a machine learning component.

Requirements allocated to ML
component management

ML requirements
verification

(Sub)system
requirements & design

Independent data
and learning verification

Data
management

Learning process
management

Model
implementation

Learning process
verification

Model
training

Inference model
verification & integration

(Sub)system
requirements verification

Figure 2: The W-shaped development process from [CoDANN20; CoDANN21].

While the two CoDANN reports analyzed practical use cases as running examples (respectively Visual Landing

and Visual Traÿc Detection, based on Daedalean’s products), the main focus was put on generic discussions

on learning assurance and the W-shaped development process.

Detailed project goals

The aim of this Daedalean–FAA research project was to perform an in-depth practical analysis of Daedalean’s

Visual Landing System (VLS), following the W-shaped process. More precisely, the goals of the project were

to:

1. Evaluate Daedalean’s NN-based technology on the use case of runway landing guidance for 14 CFR Part

91 General Aviation (GA) aircraft as a low-risk frst implementation of AI-based systems.

2. Test in practice Daedalean’s W-shaped Learning Assurance process to verify it can satisfy the intent of

FAA certifcation and development assurance processes.

3. Inform specifc policy for machine learning-based systems facilitating future compatibility with the FAA

regulatory framework and gain experience with NN-based applications, using a specifc example (landing

guidance) proposed by Daedalean.

4. Validate whether visual-based AI landing assistance can serve as a backup for other navigation systems

to facilitate safe landing in case of Global Positioning System (GPS) spoofng, outage, or loss of

integrity (implemented frst for General Aviation as safety enhancement equipment).

5. Inform future certifcation requirements for AI/NN Non Required Safety Enhancing Equipment

(NORSEE) systems, and future industry standard development.

The results of the research will be used by the FAA for certifcation policy development of NNs and AI

applications in GA, in particular regarding the reliability, robustness and real-world capability of such systems.

13 Daedalean / FAA VLS Project Report — Chapter 1

1.1.1 Structure of the report

The remainder of this introduction provides a brief overview to the Visual Landing System (VLS) analyzed in

this project and provides background on recent relevant works on machine learning/neural networks in

aviation, as multiple groups and government organizations have started projects on the topic. Section 2

reviews the W-shaped process including the other outcomes from the EASA–Daedalean CoDANN

projects [CoDANN20; CoDANN21]. Section 3 presents detailed use cases and concepts of operations for the

VLS. Before addressing the technical details and analyses, Section 4 summarizes the fight test campaign that

took place on March 31st, 2021. The architecture of the VLS and its subsystems is described in detail in

Section 5. With the use case, the system design and the fight test campaign as a basis, Section 6 explains

how the W-shaped process was practically applied to successfully develop and deliver the system. Having

demonstrated the W-shaped process in practice, Section 7 considers its integration with existing standards and

guidance such as [ED-12C/DO-178C] and [ED-80/DO-254]. Section 8 contains a safety analysis showing

how guarantees can be obtained for systems with machine learning components through the W-shaped

process. Finally, ?? concludes this research project and discusses future work, use cases and associated risks.

1.2 System overview

Background

According to [EAS20a], 41% of accidents involving small non-commercial airplanes happen during landing,

with approximately 20% involving human error. The same report scores perception as the highest human risk

factor. In addition, according to [NTSBARG9801], more than 90 percent of accidents happen in Visual

Meteorological Conditions (VMC). Hence, a system reducing or eliminating human errors during the landing

phase in VMC can signifcantly improve safety and reduce accident rates in general aviation.

There are currently no available instruments for general aviation that can assist in landing. Some instruments

in development use external infrastructure, such as Global Navigation Satellite System (GNSS). However,

reliance on GNSS carries risks of signal jamming or spoofng, planned and unplanned outages, and requires

very high precision for both airplane positioning and runway coordinates.

Daedalean’s VLS

Daedalean’s Visual Landing System (VLS) provides landing guidance for Part 91 (General Aviation) aircraft on

hard-surface runways in daytime Visual Meteorological Conditions (VMC), using a forward-looking

high-resolution camera as the only external sensor (see Figure 3).

Vision-based systems do not depend on external infrastructure, are dissimilar to GNSS-based systems, and

therefore can provide guidance when GNSS-based systems fail.

Figure 3: Left: Illustration of the VLS(forward-looking camera and compute box). Right: Camera mounted on

an aircraft during fight testing.

14 Daedalean / FAA VLS Project Report — Chapter 1

During daytime VMC fight under Visual Flight Rules (VFR), the system recognizes and tracks hard-surface

runways present in the feld of view, and allows the operator to select the one intended for landing or use

pre-confgured selection based on a fight plan.

Once a runway has been selected and once the aircraft begins its fnal descent towards it, the VLS provides

the position of the aircraft in the runway coordinate frame as well as horizontal and vertical deviations from a

confgured glide slope, similar to a radio-based Instrument Landing System (ILS). Uncertainties and validity

fags for all outputs are also produced by the system (see Table 1).

Additional cameras can be installed for redundancy and feld-of-view expansion, but only a single-camera

option is discussed in this report.

Table 1: Outputs of the VLS system during fight phases.

Flight phase Output

Cruise Runways in feld of view (with confdences)

Descent Selected runway identifer

Relative runway position (with uncertainties)

Glide slope horizontal/vertical deviation (with uncertainties)

System health

The use cases of pilot assistance and autonomy are discussed in Section 3.1.

Development view

A development fight display of the system outputs during descent is shown in Figure 1: the runway detection

is the bright green bounding box in the center of the image, and the system computes relative position (center

left) and glide slope deviation (top left) from information derived from the runway geometry (bottom left).

Neural networks and classical software

The system design will be discussed in length in Section 5.

A combination of neural network and tracker, similar to the Visual Traÿc Detection system analyzed

in [CoDANN21], performs the detection of visible runways during long fnal approach.

Once the system has been locked on a runway, a second neural network extracts geometrical information from
1a crop of the full image (see bottom left of Figure 1). The relative aircraft–runway pose can be derived from

this information, which is then fltered and tracked by a classical software component. Derived information

such as glide slope deviation is computed at this stage.

An out-of-distribution detection subsystem ensures that the input images satisfy the conditions where system

performance guarantees hold.

This follows the design outlined in [CoDANN20; CoDANN21] where a neural network is combined with a

classical software component.

1Throughout the report, “pose” will be used to denote the 6 degrees-of-freedom position and orientation of the aircraft relative

to the runway.

�

15 Daedalean / FAA VLS Project Report — Chapter 1

1.3 Project outcomes

The overview below describes the project outcomes in terms of the 5 detailed project goals outlined above.

References to the appropriate section in the report are provided for each outcome.

Evaluation of NN-based technology for 14 CFR Part 91 General Aviation

The proposed Visual Landing Guidance System is described in detail under Section 5.1 and is based on two

use cases and a concept of operations in Section 3. The performance of the neural network component of the

Runway extractor is analyzed in Section 6.5 and a full system analysis in included in Section 4.2.

Per-component and cross-component safety assessments are carried out in Section 8. In particular,

Section 8.1 provides a Functional Hazard Analysis (FHA) of the VLS and examines failure conditions

encountered during the fight test campaign (as defned by Section 4.1).

Test in practice the W-shaped process for Learning Assurance

The W-shaped development process for learning assurance, as defned under Section 2.2 was practically

applied in Section 6, describing the development process of the VLS starting from requirements in

Sections 6.1 and 6.2, its process management in Section 6.3, model training and verifcation in Sections 6.4

and 6.5, to inference implementation, data and learning verifcation in Sections 6.6, 6.7 and 6.8, respectively.

Despite the VLS still being in its design phase, the process obtains evidence of generalization, validates

performance on unseen data, and explanations and mitigations for the observed shortcomings.

Inform specifc policy for machine learning-based systems

The report provides a concise description of supervised machine learning and generalization in Section 2.1.1.

Future compatibility of regulatory frameworks, guidance and standards, as well as the physical integration of

machine learning components in traditionally developed systems is described in Section 7.1 to Section 7.3. For

the frst time, the W-shaped process from Section 2.2 was practically applied in Section 6 and tested in a

series of real fight tests in Florida, USA (see Section 4).

Validating the visual-based AI landing assistance as a backup system

The Visual Landing Guidance System defned and developed throughout this report was tested and evaluated,

as explained in the fight test campaign (see Section 4.2) and the various (per-component) evaluation sections

of the report such as Sections 6.4 and 6.5 and Section 8.

1.4 Current works on machine learning in safety-critical applications

This section gives an overview of current works on neural networks in critical applications, with a focus on

aviation, in order of publication of frst documents. The reader is also referred to [CoDANN20, Chapter 3].

1.4.1 The EASA AI Roadmap (February 2020)

The EASA Basic Regulation [Reg2018/1139], beyond its main objective to establish and maintain a high

uniform level of civil aviation safety in the European Union, aims to promote further innovation, in particular

by laying down and specifying performance-based requirements and procedures.

In October 2018, EASA set up an internal task force on AI, aimed at developing a roadmap for all the a ected

domains of the Agency, in particular (see [EAS20b, Introduction]):

• Key opportunities and challenges created by the introduction of AI in aviation;

• How the above mentioned process may impact the Agency in terms of organization, process and
regulations;

• Actions that should be taken by EASA to face these challenges.

16 Daedalean / FAA VLS Project Report — Chapter 1

Figure 4: The relationship between AI Roadmap building blocks and AI trustworthiness, where the latter would

serve as an interface between the ethical guidelines and the three more technical building blocks.

Figure 5: Tentative schedule from EASA’s AI roadmap, [EAS20b, Page 13].

EASA’s frst Artifcial Intelligence Roadmap [EAS20b] was then published in February 2020, establishing the

Agency’s initial vision on the safety and ethical dimensions of the disruptive potential of AI development in

aviation. It builds on the European Commission High-Level Expert Group on Artifcial Intelligence’s guide for

trustworthy AI [EGTA] published in 2019, based on seven key requirements (see Figure 4).

The main scope of the Roadmap is to create a risk-based “AI trustworthiness” framework in order to enable

future AI/ML applications and support the European research and leadership in AI. It is intended to be

dynamic in nature, to be yearly amended and enlarged, deepened and improved thanks to a continuous work of

exchange of knowledge and to a practical work on AI development. The initial edition focuses on the machine

learning (ML) subset of AI.

The Roadmap identifes four building blocks — still to be further researched and investigated — which are to

be considered essential for the creation of a framework for AI/ML trustworthiness: AI trustworthiness analysis,

Learning assurance, Explainability and AI safety risk mitigation (see Figure 4).

A three-phase timeline is laid out spanning from 2019 to 2035, with the frst steps being Innovation

Partnership Contracts and the release of a frst usable guidance for Level 1 AI/ML (corresponding to human

assistance/augmentation). See Figure 5 for details.

17 Daedalean / FAA VLS Project Report — Chapter 1

1.4.2 First Daedalean–EASA IPC: CoDANN (March 2020)

From the previous section, Innovation Partnership Contracts (IPCs) are an important part of the frst phase of

EASA’s AI Roadmap. As explained in [EAS20b, I.2], on one hand, they allow the industry to beneft from

EASA’s technical expertise and aviation safety culture. On the other hand, they provide the agency with an

opportunity to learn from new technologies at an early stage of development, with the aim to identify possible

regulatory gaps and safety challenges.

Daedalean and EASA carried out such a contract between July 2019 and March 2020, whose main goal was

to2:

“Examine the challenges posed by the use of neural networks in aviation, in the broader

context of allowing Machine Learning and more generally Artifcial Intelligence on-board aircraft

for safety-critical applications.”

The focus was put on the Learning Assurance and AI Trustworthiness analysis building-blocks of the frst

EASA AI Roadmap (see Figure 4), and on identifying how possible gaps in existing guidance such

as [ED-79A/ARP4754A; ED-12C/DO-178C] could be flled.

Some of the major outcomes were (see the Executive Summary of [CoDANN20]):

• The defnition of the W-shaped Learning Assurance process (see Figure 2) as a foundation for future
guidance for machine learning applications. Adapting the classical V-shaped process, it provides an

outline of the essential steps for Learning Assurance and their connection with traditional Development

Assurance processes.

• The investigation of the notion of generalization of neural networks, with related aspects such as data
quality, training, evaluation, verifcation, etc.

• The approach to accounting for neural networks in safety assessments, on the basis of a realistic use
case.

The main deliverable was a 135-page report discussing these points in-depth, with a 104-page public extract

published in March 2020 [CoDANN20].

Most of the considerations are generic and apply to all supervised learning methods, but particular attention is

given to (deep) neural networks, as they represent one of the techniques that are both most promising and

most complex. The use case of Daedalean’s Visual Landing Guidance System is used as a running example.

The report has been cited multiple times in relevant publications since then (e.g. [For+20; Wor21; Asa+20;

Dev+21; Sch+20]).

1.4.3 The UL 4600 standard (April 2020)

Led by software safety expert Prof. Phil Koopman’s Edge Case Research and published by Underwriter

Laboratories in April 2020, the UL 4600 Standard for Safety for the Evaluation of Autonomous Products [UL

4600] is the frst standard designed specifcally for autonomous/automated vehicles and related products.

The standard focuses on automotive vehicles, but has the goal of being adaptable to other types of vehicles,

as well. Akin to what [CoDANN20] did in the setting of aviation, the driving idea was to complement existing

standards (such as ISO 26262 and ISO/PAS 21488) with guidance required to cover these novel applications.

Compared to [CoDANN20], the focus on machine learning aspects is kept at a fairly high level, mostly

contained in [UL 4600, Section 8.5].

2The remainder of Section 1.4.2 is taken from [CoDANN21, Section 1.1]

18 Daedalean / FAA VLS Project Report — Chapter 1

1.4.4 EASA’s frst AI guidance (April 2021)

Building on [CoDANN20] and other industry collaborations, the frst deliverable of EASA’s AI

Roadmap [EAS20b] (see Figure 5), a 143-page concept paper [EAS21] titled First usable guidance for Level 1

machine learning applications, was published by the agency in April 2021.

The document provides a frst set of technical objectives and organizational provisions that EASA expects to

be crucial for the approval of Level 1 AI applications (human assistance/augmentation).

It is designed to guide applicants who are “introducing AI/ML technologies into systems that should be used

in safety-related or environment-related applications in all domains covered by the EASA Basic

Regulation [Reg2018/1139]” (see [EAS21, Foreword]).

At present the guidance can be used to facilitate the preparation of the approval or certifcation of products

related with AI/ML technologies, until Implementing Rules and Acceptable Means of Compliance documents

will be available.

Daedalean’s Visual Landing Guidance System is used as an example use case (see [EAS21, Annex F]), as a

Level 1A Human augmentation AI level.

1.4.5 The DEEL whitepaper (March 2021)

The DEEL (Dependable and Explainable Learning) project is a collaboration between industrial and academic

organizations between France and Québec, Canada. Overseen by IVADO, IRT Saint Exupéry, CRIAQ, ANITI,

IID Laval, industry members include Airbus, Thales, Renault and Continental. Its goal is to help the

“development of dependable, robust, explainable and certifable artifcial intelligence technological bricks

applied to critical systems.”

In March 2021, the DEEL certifcation workgroup published a whitepaper Machine Learning in Certifed

Systems [Wor21] outlining methods, concerns and possible mitigations for the namesake feld. The fndings

are compatible with [CoDANN20; CoDANN21] and [AIR6988] (see below).

1.4.6 The SAE G-34/WG-114 working group, statement of concerns (April 2021)

The SAE G-34/EUROCAE WG-114 Artifcial Intelligence in Aviation is a joint international committee

between SAE International and EUROCAE that focuses on “implementation and certifcation related to AI

technologies for the safer operation of aerospace systems and aerospace vehicles”3 . Created independently by

both organizations as two committees in 2019, they were merged in June 2019. Figure 6 illustrates the

structure of the joint committee.

The committee is constituted by more than fve hundred members from both organizations and is aimed at

promoting and standardizing AI in the entire aviation ecosystem (both Airborne and Ground), addressing both

manned and unmanned aircraft.

The objectives at the creation of the EUROCAE working group were stated to be to4 :

• Develop and publish a frst technical report to establish a comprehensive statement of concerns versus
the current industrial standards.

• Develop and publish EUROCAE Technical Reports for selecting, implementing, and certifying AI
technology embedded into and/or for use with aeronautical systems in both aerial vehicles and ground

systems.

• Act as a key forum for enabling global adoption and implementation of AI technologies that embed or
interact with aeronautical systems.

3https://www.sae.org/works/committeeHome.do?comtID=TEAG34
4https://www.eurocae.net/news/posts/2019/june/new-working-group-wg-114-artificial-intelligence/

https://www.sae.org/works/committeeHome.do?comtID=TEAG34
https://www.eurocae.net/news/posts/2019/june/new-working-group-wg-114-artificial-intelligence/

19 Daedalean / FAA VLS Project Report — Chapter 1

• Enable aerospace manufactures and regulatory agencies to consider and implement common sense
approaches to the certifcation of AI systems, which unlike other avionics software, has fundamentally

non-deterministic qualities.

Figure 6: The G-34/WG-114 Joint International Committee program.

The frst objective was met in April 2021, with the publication of a statement of concern

document [AIR6988]. Quoting the press release at publication5:

“[The document] reviews current aerospace software, hardware and system development standards

used in the certifcation/approval process of safety-critical airborne and ground-based systems, and

assesses whether these standards are compatible with a typical artifcial intelligence (AI) and

machine learning (ML) development approach.

The document outlines the requirements needed to produce a standard that provides the necessary

accommodations to support AI-enabled, sub-system integration into safety-critical airborne and

ground-based systems and details next steps in the production process.”

The fndings are compatible with the ones in [CoDANN20] and the contents of EASA’s frst guidance [EAS21].

Another document named Process Standard for Development and Certifcation Approval of Aeronautical

Products Implementing AI is expected to be published by the end of 2022, along with other deliverables.

1.4.7 Second Daedalean–EASA IPC: CoDANN II (May 2021)

Following [CoDANN20], another Innovation Partnership Contract (IPC) project between EASA and Daedalean

took place between July 2020 and May 2021, with three main goals: investigate topics left out in the frst

CoDANN project, mature the concept of Learning Assurance, and investigate the remaining trustworthy AI

building blocks from [EAS20b].

5https://www.sae.org/news/press-room/2021/06/sae-international-publishes-statement-of-concerns-for-

artificial-intelligence-in-aeronautical-systems

https://www.sae.org/news/press-room/2021/06/sae-international-publishes-statement-of-concerns-for-artificial-intelligence-in-aeronautical-systems
https://www.sae.org/news/press-room/2021/06/sae-international-publishes-statement-of-concerns-for-artificial-intelligence-in-aeronautical-systems

20 Daedalean / FAA VLS Project Report — Chapter 1

Quoting from [CoDANN21, Executive Summary], the main outcomes were in-depth discussions on the

following topics:

• Implementation and inference parts of the W-shaped process (hardware, software and system aspects),
encompassing:

– The development of machine learning models with the numerous challenges that can arise

compared to classical software development.

– The deployment of models on the operational platform, with the need for complex hardware to

perform neural network inference.

• Defnition and role of explainability within the scope of both Learning assurance and human-machine
interaction. Techniques have been identifed as well as their contributions in Learning assurance and

Human-Machine Interaction.

• Details on the system safety assessment process: out-of-distribution detection, runtime monitoring,
uncertainty estimation, and integration with fltering/tracking. This concluded discussions on the

integration of neural networks into complex systems and their evaluation in safety assessments.

As in the frst CoDANN report, an actual use case was used as a running example, this time Daedalean’s

Visual Traÿc Detection system.

According to EASA experts, the two CoDANN projects [CoDANN20; CoDANN21] provide an investigation of

all steps of the W-shaped process and enable future activities towards frst certifcations.

2 The W-shaped process for learning assurance

This chapter provides a detailed and self-contained review of the W-shaped process from the

EASA–Daedalean CoDANN reports [CoDANN20; CoDANN21] and EASA’s First Usable Guidance for Level 1

ML applications [EAS21]. The application of this process to the Visual Landing System (VLS) studied in this

report is performed in Section 6.

The W-shaped process (Figure 2) adapts the traditional V-shaped process (Figure 7) to the particularities of

the development of ML-based (sub-)systems.

Requirements allocated to ML
component management

ML requirements
verification

(Sub)system
requirements & design

Independent data
and learning verification

Data
management

Learning process
management

Model
implementation

Learning process
verification

Model
training

Inference model
verification & integration

(Sub)system
requirements verification

Figure 2: The W-shaped process from [CoDANN20; CoDANN21; EAS21].

Aircraft-level
requirements

Aircraft-level
verification

(Sub)system
verification

(Sub)system
requirements

Item
requirements

Item
verification

SW and HW
verification

SW and HW
implementation

SW and HW
requirements

R
equirem

ent capture and validation
In
te
gr

at
io
n

an
d

ve
rif

ic
at

io
n

Figure 7: The V-shaped development process as described in [ED-79A/ARP4754A].

From human-written software to a machine learning system

There is a change of paradigm from traditional systems to ones based on machine learning: while traditional

software development is based on human-written code and its compilation to machine instructions, the main

part of an ML system is a machine-learned model that is derived from data and supporting software

(processing, training, evaluation) during development.

21

22 Daedalean / FAA VLS Project Report — Chapter 2

In the case of neural networks, such a model is a computational graph with usually millions of parameters that

cannot be inspected or understood individually a posteriori, unlike human-written source code.

The goal of the W-shaped process is to control the machine learning development process to ensure that

performance guarantees can be obtained on the system outputs and behavior, just as with traditional software.

Chapter structure

This chapter starts with reminders on supervised learning and learning assurance, before each step of the

W-shaped process is presented in detail, acting as a brief summary of [CoDANN20; CoDANN21; EAS21].

2.1 Machine learning and generalization

The reader is also referred to [CoDANN20, Chapter 5] for additional details.

2.1.1 Basic concepts

Supervised learning

The AI applications discussed in [CoDANN20; CoDANN21; EAS21] focus on the supervised learning subset of

machine learning, given that this covers a large amount of prospective applications and has stronger parallels

with traditional software development than other types of AI or ML.

Given a complex function f : X → Y that might be too complex to implement manually, supervised learning
aims at approximating f by a model f̂ derived (learned) from sample pairs (x, f (x)).

Examples of such functions are given by the two neural networks of the VLS analyzed in this report (see

Section 1.2). For the runway detection component (similar to Visual Traÿc Detection from [CoDANN21]), X
is the set of input images (runways under the Concepts of Operations described in Section 3), Y the set of
bounding boxes in image space, and f the function that assigns to an image x ∈ X the set of runway bounding
boxes f (x).

These two functions could be implemented by hand, as pre-deep learning computer vision shows, but far from

the level of accuracy that modern machine learning allows nor that the end system requires.

Metrics

The quality of the approximation of the true function f by the model f̂ is measured by metrics
m : Y × Y → R, requiring that � �

m f̂ (x), f (x)

be small over input points x ∈ X.
If Y = R, a metric could simply be the squared di� erence m(y1, y2) = (y1 − y2)2 .

Parametric algorithms

Many applications are based on parametric machine learning algorithms, which choose a model f̂ among a

family of candidate models based on the available sample pairs (x, f (x)). The set of these pairs is called the
training data. This is for example the case of neural networks, where the candidate models are parameterized

by weights of matrix operations such as convolutions. The process of selecting the optimal model/parameters

from data is called training, usually performed through iterative mathematical optimization algorithms (such

as stochastic gradient descent for neural networks).

The discussion herein will solely focus on o�ine (non-adaptive) learning: the system is developed to meet

adequate performance requirements after development and does not evolve during operations. In particular,

the considerations of [TC-16/4] do not apply.

23 Daedalean / FAA VLS Project Report — Chapter 2

x

y

Underfitting

x

y

Good trade-off

x

y

Overfitting

Model
True function

Samples

Figure 8: Examples for underftting, good ftting and overftting. Reproduced from [CoDANN20, Figure 5.2].

2.1.2 Generalization

The input spaces X where machine learning approaches are relevant are generally very complex (e.g. images).
This brings the crucial question of the quality of the approximation to a function f by a model f̂ on datapoints
outside the fnite number of elements considered during development/training. After all, f̂ could simply

memorize the dataset used during training (a form of overftting) and have an arbitrarily poor performance at

approximating the true function beyond these points (out-of-sample). In other words, the goal of training is to

learn the general pattern of f given a fnite amount of samples, therefore ensuring good performance at
approximating f on all of X. This is called generalization.

Figure 8 provides a simplifed example for underftting and overftting. Learning an approximation (blue line)

to a function (red line) through samples (blue points; with random noise added to simulate collection errors

εi). The model at the center is a good approximation, while the right-hand side one memorizes the training

data and results in a poor approximation on new data (overftting).

The feld of statistical learning theory studies how machine learning models that have provably good

performance guarantees on all points of the input space (in a probabilistic setting, in terms of metrics) can be

obtained.

While the following provides an overview in an idealized setting, the Model training, Model implementation

and Inference model verifcation and integration phases of the W-shaped process (see Section 2.2) handle

additional considerations required in practice, for example because of the existence of two environments

(learning during development and inference during operations).

Model development process

As outlined above, the general methodology of parametric supervised learning is to:

1. Collect a representative dataset (training dataset)

Dtrain := {(xi , f (xi) + εi) : i = 1 . . . n} (2.1)

of samples from the true function f . Given that f is by defnition complex, this is usually a costly
process involving data collection and human annotation. The presence of the terms εi denote that it is

often not possible to collect the actual value of the function, because of small human annotation or

sensor errors. A natural requirement is that these errors are zero on average and minimal.

2. Choose one or more families of models f̂� parameterized by some parameter θ in a (large) parameter
space �.

3. (Training) Apply a supervised learning algorithm to fnd a parameter θ so that f̂ is a good approximation
to f on Dtrain, e.g.

X
Ein(f̂�, m, Dtrain) :=

1
m(f̂�(x), y) is small. (2.2) |Dtrain|

(x,y)∈Dtrain

�� ��

24 Daedalean / FAA VLS Project Report — Chapter 2

4. (Evaluation on validation set) To get an objective measure of the performance of f̂� on out-of-sample

points, the same evaluation is performed on a validation dataset Dval collected similarly to Dtrain. Likely,

the metrics will be slightly worse as complex model families may easily learn non-generic details of the

training data. Signifcantly worse metrics might mean that the process simply made f̂ memorize Dtrain
instead of learning to approximate f on all of X; see Figure 8.

5. If the results are not satisfactory, repeat 2.-3. with other training parameters, other models, etc. (but

with the same training and validation sets). This iterative process should be carefully controlled so that

the validation set does not become a training set itself, and so that evaluations still provide an adequate

estimation of out-of-sample performance during the model selection phase.

6. Choose the “best” model f̂ from the previous steps, according to factors such as performance on the

validation set and model complexity (see Section 2.3.3). This selection happens among a small number

of candidate models, and the generalization arguments generally only depend on the number of models

considered and the chosen one.

7. (Evaluation on test set) Evaluate the chosen model f̂ on a third dataset, the test dataset Dtest to

obtain an empirical measure of the performance of the model on unseen data. Indeed, the validation

dataset Dval has been used iteratively during development and like Dtrain might not provide an objective

measure of out-of-sample performance (on data not seen during development, i.e. outside Dtrain, Dval,

Dtest). In practice, this will happen both in the learning and inference environments, in the latter case

with the transformed inference model: see Section 2.3.6.

Performance on unseen data

Learning theory provides results ensuring, under various conditions, quantifable probabilistic performance

guarantees of the fnal model f̂ on X as a function of (depending on methods):

• the model family, • the evaluation scores,

• the amount of training data, • the data.

In many cases a complex enough model family and a suÿcient amount of data should be able to provide a

good approximation to the true function f . This is quantifed for each model family by learning theory.

The “representative” requirement for the datasets (see frst step of the model development process above) is

essential: to expect good performance over all points of X, the development data should uniformly cover it,

even if it can only be a fnite subset. This is made precise by transforming X into a probability space
X = (X, P) including a probability distribution P .

While in-sample error has been defned above as Ein, the out-of-sample error

� �
Eout(f̂ , m) = Ex∼X m(f̂ (x), f (x)) , (2.3)

where Ex∼X denotes expected value over X , then measures the performance of a model (according to a
metric m) on all of X , including points not included in Dtrain, Dval or Dtest. This defnition also shows the
necessity of introducing probability spaces as X is likely infnite.

Generalization bounds

A typical generalization statement reads like

� �
PDtrain∼X n Eout(f̂ , m) − Ein(f̂ , m, Dtrain) < ε > 1 − δ (2.4)

for a generalization gap tolerance ε > 0 and a probability tolerance δ ∈ [0, 1].

25 Daedalean / FAA VLS Project Report — Chapter 2

Performance guarantees
Dataset management

during operational phase

Model performance

Generalization

guarantees

during design phase

Figure 9: Dataset management and development process imply performance guarantees during operations.

Spelled out, this means that:

• with probability at least 1 − δ (usually designed to be close to 1),

• given a training dataset Dtrain of given size sampled uniformly from X (according to its probability
measure),

• a model trained on that achieves an in-sample (development) error E1 ∈ R

• will have an error on unseen data at most E1 + ε.

For a fxed δ and model family, ε is usually a function of |Dtrain| such that ε → 0 as |Dtrain| → ∞.
Therefore, performance of a machine learning model on unseen data can be made as close as desired to the

development performance (measured on a fnite amount of data) given enough training data. This is

summarized in Figure 9 from [CoDANN20, Section 6.2].

Figure 10 illustrates the machine learning generalization gap between the in-sample error Ein (empirical loss)

and the out-of-sample error Eout (expected loss).

Dataset samples

True data

distribution

Empirical loss

(known)

Expected loss

(unknown)

Losses

generalization gap

Samples

Probabilities

Figure 10: Illustration of the machine learning generalization gap. Reproduced from [CoDANN20, Figure 5.2].

Generalization is however a complex topic, in particular for neural networks, and the reader is directed to

Section 8 and [CoDANN20, Chapter 5] for additional details.

26 Daedalean / FAA VLS Project Report — Chapter 2

2.2 Overview of the W-shaped process

The aim of the W-shaped process is to ensure that the implication in Figure 9 holds. In particular, this

requires processes on:

• Data quality (representativity, quantity, etc.);

• Model development (training and evaluation),

covering the left-hand side of Figure 2.

The next steps of the process (model implementation, verifcation, integration) guarantee that the model used

during inference still satisfes adequate performance guarantees as part of the end system intended to be

certifed. This is important as the development model is usually signifcantly di� erent (in terms of software

and hardware) from the one deployed in the fnal system. Similarly, the development environment might use

complex but non-certifed software and hardware, a risk that must be mitigated. These aspects are discussed

in detail in [CoDANN21].

Overall, the W-shaped process is designed to guarantee that the theoretical statement that machine learning

models generalize quantifably well on unseen data given enough development data holds in practice.

A step-by-step overview can be found in [CoDANN21, Section 1.1.1] and is summarized below:

• Requirements management (top left) and Requirements verifcation (top right), covered by traditional
system development [ED-79A/ARP4754A].

• Data management, where datasets for training, validation and testing are created according to the
requirements. This might include collection, annotation/labeling, and processing.

• Learning process management, which includes all the steps required prior to the training (next step):
metrics, strategy to use for model selection, models/architectures to evaluate as well as the setup of

software/hardware environment where the actual training takes place.

• Model training is self-explanatory, driven mostly by the previous step, in an iterative training/validation
cycle, to fnd a best-performing model (architecture/hyperparameters).

• Learning process verifcation, where the outcome of the previous step, a single trained model, is
evaluated on the test dataset. This evaluation includes understanding generalization (performance

guarantees), failure cases (which can then be fed to safety assessment) and other aspects such as

robustness and explainability.

• Model implementation, which includes all the steps required to run the model obtained on the
software/hardware platform, that usually di� ers from the development platform.

• Inference model verifcation and integration, where the desired properties of the deployed model are
verifed, including:

– Typical software verifcation aspects such as execution time, memory/stack usage, etc.

– Performance (in the sense of accuracy) guarantees with respect to metrics from requirements. If

these are derived from the trained model, it is in particular fundamental to understand the impact

of the transformation in the previous step, as well as that of the development software/hardware

platform (whose impact goes beyond writing and compiling source code).

– Integration with traditional (non-machine learned) software (e.g. fltering, monitoring).

• Independent data and learning verifcation, meant to close the data management life-cycle, ensuring that
data was correctly used throughout, and corresponds to the requirements

(completeness/representativity, see [CoDANN20, Chapter 6]).

27 Daedalean / FAA VLS Project Report — Chapter 2

As in the traditional V-shaped development process, these steps are not hermetic. For example, it is

acceptable to collect more training data if adequate performance cannot be reached in the Model training step

or if the Learning process validation uncovers a data bias. However, it is crucial to assess and mitigate possible

deviations from a linear process, e.g. to avoid invalidating generalization guarantees (see Section 2.3.3). This

feedback follows a similar process as in with traditional V-shaped development where during verifcation a

Problem Report is documented and processed.

On the other hand, the W-shaped process is designed so that it provides assurance of performance on unseen

data at its completion.

The next section provides additional details on each step not covered by traditional software development

(below the dotted lines of Figure 2). As in [CoDANN20; CoDANN21], the focus is put on neural networks,

given that these are the type of machine learning models used by the VLS analyzed in this report.

2.3 Details on the W-shaped process steps

2.3.1 Data management

Operating space identifcation

Clearly, any approach that allows to derive performance guarantees on unseen data has to set explicit and

strong assumptions about the input data space. This is the case for supervised machine learning as reviewed

in Section 2.1: all results are based on a probability space X for the input, which must be precisely identifed.

Machine learning applications tend to operate on higher-dimensional spaces than traditional software (e.g.

images), where doing this critical identifcation is a diÿcult task.

As discussed in [CoDANN20, Section 6.2.7] and [CoDANN21, Section 5.1], this might be done using a

combination of:

• Explicit operating parameters derived from high-level requirements (e.g. weather, time of day, location,
aircraft pose. . .) and metrics based on the inputs themselves (e.g. brightness, contrast, entropy. . .).

However, this might fail to capture aspects of the operating space that are harder to describe explicitly.

• More advanced techniques based on data itself, e.g. by dimensionality reduction. As this is independent
of the task of approximating f , this is not circular nor requires expensive annotations, and can therefore
rely on large amount of data additional to the training/validation/testing dataset created thereafter. In

other words, this approach relies on describing the operating space by collecting samples from it and

using unsupervised learning methods to extract a description of the operating space that will likely be

more powerful (but less interpretable) than explicit operating parameters. More details are given

in [CoDANN21, Section 5.1.1].

The last step of the W-shaped process (below the dotted line of Figure 2) Independent data and learning

verifcation, is also partly dedicated to verifying a posteriori that the operating space has been correctly

identifed and covered (see below).

Data quality

Section 6.2 of [CoDANN20] analyzed how the requirements from [ED-76A/DO-200B] on aeronautical data

naturally apply to supervised machine learning:

• Data accuracy corresponds to ensuring that the εi from collected pairs (xi , f (xi) + εi) are minimum
(collection/annotation error).

• Completeness corresponds to having enough data, and sampled from the distribution of the target input
space X , in the sense that the training, validation and testing datasets are sampled uniformly

28 Daedalean / FAA VLS Project Report — Chapter 2

independently according to the underlying distribution:

×X ntest (Dtrain, Dval, Dtest) ∼ X ntrain ×X nval .

Note that the amount of data to be created will likely depend on the complexity of the models used and

the performance guarantees that are sought. Hence, it is possible that the datasets need to be

augmented a posteriori, which does not invalidate the process.

• Resolution, traceability, assurance level, timeliness and format apply with the original formulations.

Goals

The data management step of the W-shaped process:

• Identifes the input probability space X and provides justifcations for the correctness of this
identifcation.

• Designs methods to check whether samples belong to X (out-of-distribution detection) and measures
coverage; see also [CoDANN20, Section 6.2.8] and [CoDANN21, Section 5.1].

• Creates independent training, validation and testing datasets from that distribution, ensuring not only
that they are correctly sampled and large enough (and therefore providing an adequate coverage of X),
but also that the pairs (xi , f (xi) + εi) have minimal collection and annotation errors εi .

• Creates processes to handle development data beyond the datasets, e.g. trained models, inference
models, evaluation results. . .

The contents of the test dataset should be totally isolated from the developers except carefully controlled

evaluations in the Learning process verifcation, Inference model verifcation and Independent data and learning

verifcation phase.

Ideally, the test dataset is built from the requirements by a di� erent team, allowing to check that the

operating space X is unambiguously defned from the requirements. See [CoDANN20, Section 6.2.9] and the
Learning process verifcation step below.

2.3.2 Learning process management

Training process

One part of the Learning process management step of the process is to select:

• Performance metrics (in the sense of metrics m : Y × Y → R as defned in Section 2.1.1) and their
target values. As in any scientifc work, it is important to set objectives a priori. These should be derived

from high-level system requirements (Requirements allocated to ML component management), in the

sense that adequate performance metrics on the network should translate into the desired performance

requirements on the fnal system (e.g. after fltering the neural network output).

• Model architectures, i.e. the families of models that will be considered during training.

• Training parameters such as loss function (and how it relates to the target performance metrics),
optimizers, hyperparameters such as learning rate, etc.

• Data augmentation mechanisms, and the evaluation of the gap between augmented data and real data:
augmented datapoints should be precisely elements of X , or mitigations should be put in place (e.g.
transfer learning). See [CoDANN20, Chapter 7].

The candidate architecture should be chosen so that its complexity matches the data available and the target

performance bounds. Indeed, as recalled in Section 2.1.2, more complex model families can approximate more

complex functions, but might require more data to prove required performance guarantees, as the model is

more likely to overft to data.

�

29 Daedalean / FAA VLS Project Report — Chapter 2

Requirements allocated to ML
component management

ML requirements
verification

Independent data
and learning verification

Data
management

Learning process
management

Model
implementation

Learning process
verification

Model
training

Inference model
verification & integration

(Sub)system
requirements & design

(Sub)system
requirements verification

Figure 11: The learning (green) and inference (yellow) environments in the W-shaped process. From [Co-

DANN21, Figure 3.1].

Training environment

Another part is to setup the hardware and software environment where the training will take place and

implement the software for data ingestion, training, evaluation, etc.

As studied in [CoDANN21, Chapter 3], it is expected that this environment (learning environment) is di� erent

from the operational one (inference environment) because it has di� erent requirements: while the inference

environment has real-time safety-critical requirements, the learning environment does not, but instead needs

to compute backward passes (in the case of neural networks, backpropagation), compute performance

metrics, and have a higher data throughput.

Usually, the learning environment consists of Graphics Processing Unit (GPU) with a Commercial o� -the-shelf

(COTS) software stack of drivers, operating system, job execution framework (e.g. CUDA or ROCm), kernel

library (e.g. cuDNN or MIOpen), and fnally a top-level framework like TensorFlow [Mar+15] or

PyTorch [Pas+19].

While being separate from the operational/inference stack, the learning environment produces a model that is

a part of the fnal system. Therefore, requirements on the learning environment are necessary. The exact

stringency of these (e.g. tool qualifcation) depend on specifc details of the overall process, and the additional

verifcation steps applied to the output of the learning environment. This is discussed in detail in [CoDANN21,

Sections 3.3.3, 3.4-3.8], with additional details provided in the descriptions of some of the other steps of the

W-shaped process below.

Figure 11 summarizes how the learning and inference environments map to the W-shaped process.

2.3.3 Model training

The Model training step carries out the training and evaluation of models on respectively the training and

validation datasets Dtrain, Dval, corresponding to steps 3.-5. of the methodology in Section 2.1.2.

Multiple iterations of the training/validation process outlined in Section 2.1.2 (steps 3-4) are usually necessary

to decide on a candidate model, as training algorithms (such as stochastic gradient descent) usually depend on

ancillary parameters (hyperparameters) such as learning rate, in addition to the dependence on the way data is

consumed (augmentations, order, data weighting. . .).

Test set

Crucially, the Model training step does not have access to the test dataset Dtest, to ensure that the

generalization ability (performance on unseen data) of the model can be objectively evaluated. Indeed, the

iterative evaluations on the validation datasets e ectively correspond to training on both Dtrain and Dval.

30 Daedalean / FAA VLS Project Report — Chapter 2

Artifacts and reproducibility

The training process should be recorded (algorithms, ancillary parameters, augmentations, etc.) and

reproducibility should be ensured. In particular, evidence showing the following should be produced:

• No samples from Dtest were included in either Dtrain or Dval.

• The metrics and their targets were unchanged in all experiments.

• The implementation of the training software and framework was not changed. This is to simplify
traceability; changes in the environment (from training to inference) are handled in the Inference model

verifcation phase (see below and [CoDANN21, Chapter 3]).

• The purpose and expectation of each experiment was adequately described.

• The bias/variance trade-o� of the fnal model was analyzed, including by considering di� erent types of
models.

2.3.4 Learning process verifcation

After a candidate model has been selected in the previous step, the goals of the Learning process verifcation

phase, in the middle of the W-shaped process, are to:

• Evaluate the model on the test set Dtest to confrm that generalization abilities of the model are as
estimated in the previous steps. The empirical generalization gap is the di� erence between performance

metrics on the test set and on the training/validation set. This is however not yet a formal estimation of

the out-of-sample error Eout defned above.

• Analyze the properties of errors made by the model on the test set: distribution, systematic failure cases,
etc. This is both to ensure that the model does not perform systematic errors (which would indicate for

example a lack of data) and to gather information that will be useful for the safety assessment.

• Study additional properties of the models such as robustness (see [CoDANN20, Section 6.4]), system-
and output-level explainability. Explainability is one of the major topics of the second CoDANN project,

and [CoDANN21, Chapter 4] identifed two main goals:

– Strengthening the data-learning assurance link, to ensure that the operating space has been

correctly identifed and specifed, this being one of the major causes of failures of machine learning

systems in the real world;

– Providing output-level explanations for development, certifcation, operations (human-machine

interaction) and continuing airworthiness.

• Perform sanity checks on the learning process: training curves (representing the evolution of the loss and
metrics over time, e.g. to assess possible overftting), replicability, etc.

The frst three activities are repeated for the inference model in the Inference model verifcation and

integration step (see Section 2.3.6).

2.3.5 Model implementation

The model implementation phase of the process moves the model from the learning to the

inference/operational environment (see Figure 11).

As explained in [CoDANN21, Chapter 3], the model in the learning environment is not only an abstract

mathematical function represented by a computational graph, but also an implementation tied to the hardware

31 Daedalean / FAA VLS Project Report — Chapter 2

and software stack. This means that moving to another environment requires reimplementations and careful

considerations on the preservation of properties.

The passage to the inference environment usually consists of:

• Performing optimizations such as operator fusion, pruning or quantization (see [CoDANN21, Section
3.5]). Note that some of these may be performed as part of model training if either preservation

properties post-transformations cannot be shown or if post-training transformations have a too high

performance impact; see [CoDANN21, Sections 3.6-3.7].

• Exporting the internal representation of the computational graph from high-level framework in the
learning environment (e.g. TensorFlow or PyTorch) into an exchange format such as Open Neural

Network Exchange (ONNX) [BLZ+19] or Apache TVM’s Relay [Che+18]. This might include

modifcations to the computational graph to cater to the change of mode (e.g. changing functions such

as batch normalization or dropout, removing functions related to the propagation of gradients).

• Implementing the execution of the computational graph on the operational hardware/software. The
inference environment may vary signifcantly between applications, but the GPU is likely replaced by a

Field Programmable Gate Array (FPGA) or an Application Specifc Integrated Circuit (ASIC), and the

software stack replaced by a custom one. While having a NN driving the function is a novel approach,

the inference stack itself follows traditional guidance such as [ED-80/DO-254; ED-12C/DO-178C].

2.3.6 Inference model verifcation and integration

The model implementation phase of the W-shaped process might have induced signifcant changes on the

model considered in the Learning process verifcation phase: change of hardware, conversion,

reimplementation, transformations such as quantization or pruning.

The Inference model verifcation and integration step of the W-shaped process verifes that:

• The inference model has the desired properties in terms of performance on unseen data (generalization,
typically in terms of out-of-sample error; see Section 2.1.2).

• The inference stack (running on end-system hardware and software) satisfes classical real-time
constraints (execution speed, memory usage, etc.).

Methods

Depending on the generalization arguments, this might take the form of an evaluation of the in-sample error

on the training/validation/testing, to get a generalization statement on the inference model directly, albeit

keeping traceability to the training process: see [CoDANN21, Section 3.7]. In any case, this evaluation

provides an assessment of the possible di� erences between the two environments.

Integration with subsequent systems

This step of the W-shaped process also analyzes the integration with the system(s) encompassing the neural

network (e.g. fltering, monitoring, consumers of the output). In current applications, a neural network usually

serves as a sensor (e.g. for perception; see also [CoDANN21, Section 5.4]), and the interaction of the neural

network outputs (in particular the distribution of errors) should be analyzed again (after the one done in

Learning process management) at this point.

Both end-to-end testing and an analysis of the propagation of generalization bounds to the end system should

be carried out.

This is done for the VLS in Sections 8.5, 8.6 and 8.7.

�

32 Daedalean / FAA VLS Project Report — Chapter 2

2.3.7 Independent data and learning verifcation

The last step of the W-shaped process not covered by traditional system development (below the dotted lines

in Figure 2) has the following goals:

• Verify that the data was correctly used during the development process, in particular that the test
dataset was not used for an iterative training process. If the development datasets were modifed during

the development process, it should be verifed that the e ect has been taken into account in the analyses.

• Conclude verifcations that the data corresponds to the requirements, closing the work started in the
Data management step. Chapter 4 of [CoDANN21] surveyed machine learning explainability techniques

and noted that one particular application could be to uncover operating space misidentifcations

(see [CoDANN21, Section 4.8]).

• Verify that the learning and inference environments (software and hardware) have been setup and used
according to their requirements, and that there are no unaccounted di� erences between the inference

model and the ones obtained in the development environment.

• Ensure the outputs at each step of the process were correctly produced and also available according to
the plans and standards.

3 Use cases and Concepts of operations

This chapter provides detailed use cases and Concepts of Operations for the Visual Landing System

introduced in Section 1.2. This data provides more background on the system and is used as input to

discussions and analyses in the next chapters.

3.1 Use cases

3.1.1 Use case 1: Pilot assistance

The system can be used as pilot advisory for human augmentation and human assistance, corresponding to

Level 1 in [EAS20b].

In this case, the output of the system provides landing assistance for the pilot via in-cockpit display, similar to

a ground infrastructure-based ILS. A development1 display is shown in Figure 1, providing glide slope deviation

indicators, attitude, course vector and other parameters, as well as camera view with the runway outline.

The system continuously searches for runways suitable for landing in the camera view. All runways suitable for

landing are highlighted in the camera image on the cockpit display. Via the display controls the pilot may

indicate one of them as the intended landing target. Once the runway is selected and matched in the

database, the system starts providing on-display landing guidance. The guidance stops when the ownship

moves outside of the system operating limits (see below).

3.1.2 Use case 2: Full autonomy

This use case considers that the system is integrated on a fully autonomous aircraft, where a human in the

loop is not part of the system. The VLS system can be coupled to an onboard autopilot for fully autonomous

landing, corresponding to Levels 2 to 3 in [EAS20b]. Positional output and deviation angles from the VLS are

used as control inputs, and the video feed may be used for monitoring.

Another system is used to guide the ownship during cruise phase, until landing phase in the VLS operational

volume. The target runway is specifed in the fight plan, and after a lock is obtained (runway detection and

identifcation), the VLS provides input to the autopilot. Either an extension of the VLS or another system

provides terminal guidance, which is outside the scope of this report.

3.2 Operating Limits

The system is intended to provide landing guidance to a Part 91 (General Aviation) aircraft towards a

hard-surface runway in daytime VMC, from a point where it becomes possible to visually identify the runway in

the camera image, until 0.3 NM to the threshold.

Extension to the system may provide guidance down to touchdown and taxiing, but that is outside the scope

of this report.

Table 2 summarizes the terminology used to decribe the operating limits in the remainder of this section.

1Discussions on symbology and human-machine interaction are ouf of the scope of this report.

33

�

34 Daedalean / FAA VLS Project Report — Chapter 3

Table 2: Terminology for operating limits. See also [AC150/5340-1M].

Operational volume The area in the fight envelope where the system should operate.

Threshold The end of the runway closest to ownship.

Far end The end of the runway farthest from the ownship.

Glide slope An imaginary straight line that the aircraft should follow for a

smooth landing.

Glide slope angle The vertical angle between the glide slope and the horizontal plane.

Glide slope apex A point on a glide slope that is one kilometer beyond threshold.

Glide slope deviation angle A vertical angle between a line connecting ownship to the glide slope

apex, and the glide slope.

E� ective glide slope angle A vertical angle between a line connecting ownship to a point on

the centerline 150 feet beyond threshold, and the horizontal plane.

Lateral apex A point on the runway centerline two kilometers beyond threshold.

Lateral deviation angle A horizontal angle between a line connecting ownship to the lateral

apex, and the runway centerline.

Distance to runway Distance from ownship to threshold along the runway centerline.

Azimuth A horizontal angle between the camera direction of view and the

runway centerline.

Pitch A vertical angle between the camera direction of view and the hori-

zontal plane.

Roll An angle between the gravity vector projected onto the camera focal

plane and a direction “down” on that plane.

Pose 6 Degrees of Freedom (DoF) position and orientation of the aircraft

relative to the runway. For example, using lateral deviation angle,

e ective glide slope angle, distance to runway, azimuth, pitch, and

roll.

Sun elevation angle A vertical angle between direction towards the sun and the horizontal

plane.

Sun azimuth A horizontal angle between direction towards the sun and the runway

centerline.

Visibility A distance at which a large object, e.g. a runway, can be visually

discerned by a human observer under current meteorological condi-

tions.

Operational volume

The operational volume can be defned as:

• Distance to the runway is between 0.3 NM and 2 NM.

• E� ective glide slope angle is between 2.5◦and 8◦ .

• Lateral deviation angle is less than 5◦ .

The runway should be fully visible in the camera view and aircraft orientation should be typical for Part 91

landing: azimuth is less than 30◦ , pitch is less than 20◦and roll is less than 30◦ . See Figure 12 and Figure 13

for illustrations.

X

Z

C

A

B

Y

D
X

A B

35 Daedalean / FAA VLS Project Report — Chapter 3

Figure 12: Concept of operations: sideway view. Axis X points along the centerline, axis Z points up. Dotted

line represents an example aircraft trajectory. Point A is where VLS may engage, point B is where it should

disengage. Green area illustrates operational volume. Point C is a glide slope apex, the solid line starting at it

is the glide slope.

Figure 13: Concept of operations: top-down view. Axis X points along the centerline, axis Y points sideways.

Dotted line represents an example aircraft trajectory. Point A is where VLS may engage, point B is where it

should disengage. Green area illustrates operational volume. Point D is a lateral apex.

36 Daedalean / FAA VLS Project Report — Chapter 3

Visual requirements

The runway in the camera image should have enough contrast to visually discern it from the background:

• Visibility is more than 4 km.

• Sun elevation angle is above 5◦ .

• The runway has hard surface and is fairly maintained.

• The runway has centerline and designation markings clearly visible (e.g. not covered by snow).

Supported runways

Therefore, the system is expected to function on both precision and non-precision runways (as defned

in [AC150/5340-1M]). There are no assumptions made about the color of the markings, as long as there is

contrast to the surface.

The system must not mistake a taxiway, an access road, a closed runway for a runway. In the case of two or

three parallel runways, the system uses an external input provided by a pilot or another system to make a

selection. Before engaging landing guidance the runway should be selected and its width and slope must be

known.

Non-supported functions

The system is not intended to:

• Function on a short fnal and during touchdown.

• Function in a traÿc pattern (circuit) apart from the long fnal.

• Make a choice between left, right, central runway among parallel runways.

• Perform well during unpowered approaches.

3.2.1 Runway Database

The system requires the runway width to compute the position of the aircraft relative to the start of the

runway, as well as the runway slope to compute corrected altitude and glide slope (see Section 5.2.1).

Moreover, runway identifers and locations are used to match between detected and target runways, allowing

selection (either by the pilot or via a fight plan).

This is obtained from a traditional onboard database in the sense of [ED-76A/DO-200B]. For every runway

supported by the system, the database contains an entry with:

Name Human readable unique runway identifer.

Coordinates WGS84 coordinates of the runway start and end.

Width Width of the runway.

Slope Altitude di� erence between the far end and the threshold, divided by the runway length.

Future extensions to the system may eliminate the need for the runway database (when relevant) by

estimating runway width and slope using onboard sensors.

3.3 Concepts of Operations (ConOps)

Table 3 desribes the Concepts of Operations (ConOps) for the two mentioned use cases. The ranges of

parameters are chosen to refect typical Part 91 operations.

�

37 Daedalean / FAA VLS Project Report — Chapter 3

Table 3: Concepts of Operations (ConOps)

Operational Concept

Application Visual landing guidance (Runway)

Aircraft and

Operations type

Aircraft Part 23 operating under General Aviation

Part 91

Flight rules
Visual Flight Rules (VFR) in daytime Visual

Meteorological Conditions (VMC)

Special

considerations

No Instrument Landing System (ILS), no PAPI

equipment assumed

Level of

automation
Pilot assistance (1) Full autonomy (2)

System interface In-cockpit display

Flight computer guidance:

position, deviations,

uncertainties

Descent
Identify runways in view, select target runway,

maintain tracking

Final approach Maintain tracking

Decision point Decide to land/abort

Relevant Operating Limits

Runways
active, marked, hard surface, present in onboard

database

Distance 0.3 NM – 2 NM

Altitude 100 ft – 2300 ft AGL

E ective glide

slope angle
2.5◦– 8◦

Lateral deviation

angle
up to 5◦

Azimuth (crab

angle)
up to 30◦

Pitch up to 20◦

Roll up to 30◦

Time of day (sun

position)
daytime, sun higher than 5◦ above horizon

Time of year

(season)
all seasons

Visibility at least 4 km

4 Flight test campaign

As one of the goals of the project, a prototype of Daedalean’s Visual Landing System (VLS) was

demonstrated on March 31st, 2021 in the presence of FAA members at various airports on the Atlantic coast

of Florida. Figure 14 shows the development view of the system.

The test runways included some that had been used to train the neural networks (using data gathered in

previous fights) and some that had not been seen during training, both measuring out-of-sample performance

(see Section 2.1.2).

The fight tests consisted of standard landings, but also robustness tests at the edges of the glideslope/lateral

deviation angles, and aggressive maneuvering and landing at the onset of darkness.

This section starts with a description of the fight test setup, before the results of the fight tests are

presented. The collection of the data used to develop the system is discussed in Section 6.2.3.

Figure 14: VLS development display.

4.1 Flight test setup

Hardware

An experimental Cessna C182 airframe, pictured in Figure 15, was modifed with a forward facing camera

(12.3 megapixels FLIR BFS-PGE-122S6C-C with VS-0828HV lens) mounted under the right wing.

The camera images were fed to a ruggedized Sintrones ABOX5000G onboard computer [ABOX] featuring an

Intel Quad Core i7 CPU and an AMD Embedded Radeon E9260 Graphics Processing Unit (GPU), running the

VLS software.

The VLS output was:

• Provided to the operators through a tablet installed in the cabin (see Figure 14 for a sample output);

38

�

39 Daedalean / FAA VLS Project Report — Chapter 4

Figure 15: Experimental Cessna C182 with forward facing camera mounted under the right wing and additional

tablet display in the cabin.

• Broadcast via 4G to the Daedalean team on the ground along with other FAA members via video call
(same visual display);

• Published on the ARINC bus and read by the Avidyne IFD for display.

Di erences in setup

On the fight test day the system was still in active development, and the version that was used di� ers from a

future production system, and also di� ers from a system described in this report.

The following di� erences should be taken into account when evaluating the fight test results:

• The onboard GPU had lower compute performance compared to inference hardware in the fnal system;

• Out-of-distribution (OOD) Detection (see Section 5.3) was disabled, as it was not fully implemented at
the time;

• The Pose Filter (see Section 5.5.2) had additional monitoring logic that is not covered in this report;

• The system provided guidance down to touchdown, but that part of the system is not covered in this
report.

Recording

The inputs (images) and outputs of the system (bus messages) were recorded on a Solid State Drive (SSD)

for subsequent analysis.

The onboard computer also read GPS messages on the ARINC bus and logged them for comparison in the

o�ine evaluations presented later in this section. These messages were only used by the VLS system to aid

initial runway selection, before initiating the landing.

Personnel

FAA members David Sizoo and Ross Schaller were invited to be onboard the aircraft and observe the live

output of the system. The aircraft was piloted by Mike Keirnan from Avidyne.

Runways

Table 4 contains information about the runways used during the fight tests. Both test fights took o� and

had a fnal landing on Orlando Melbourne International Airport (runway 9L), where the Daedalean team had

their ground base.

As described in Section 6.2.3, the team had performed several data collection approaches on FAA codes X26

and X59 (no ICAO codes available), which were used (together with data collected on European runways)

40 Daedalean / FAA VLS Project Report — Chapter 4

during the training of the neural network described in Section 5.2. Vero Beach Regional Airport (KVRB) had

not been seen at all during training.

It is important to note that the neural network is fxed at design time and is not learning during fight. Hence

the system does not improve after landing several times at an unseen runway.

Table 4: Runways used during the fight tests

Code Airport Runway Dimensions Type Notes

KMLB Orlando Melbourne International 9L 1829 × 46 m Non-precision 4 training approaches

X59 Valkaria 1219 × 19 m Visual Backup, not used

X26 Sebastian Municipal 10 975 × 23 m Non-precision 25 training approaches

X26 Sebastian Municipal 23 1226 × 23 m Non-precision 2 training approaches

KVRB Vero Beach Regional 12L 1068 × 23 m Visual Not seen during training

KVRB Vero Beach Regional 12R 2229 × 32 m Precision Not seen during training

During the test approaches, the system was expected to provide landing guidance from approximately 2 NM

to 0.3 NM horizontal distance to the runway, according to Table 3. The system also provided guidance until

touchdown during the demonstration, but that phase is not evaluated in this report.

The system was tested at various glideslope angles from three to eight degrees.

4.2 Evaluation results

4.2.1 Evaluation criteria

Figure 14 shows an example of the guidance provided by the VLS prototype when approaching a runway.

Runway identifcation

The region of the image where the system predicts that there is a runway is marked with a yellow square. The

identifed edges of the runway are marked with blue lines. The FAA members were asked to observe:

• Whether these overlays correctly identifed the runway region and its edges;

• At what distance the system acquired the runway;

• Whether there was any jitter or loss of acquisition (followed by re-acquisition) during the approach.

It should be noted (also from a Human-Machine Interface (HMI) and explainability perspective) that a visually

correct output of these quantities guarantees that the computed pose will be correct (assuming correct

runway parameters in the database), regardless of the computation performed by the neural network.

Glideslope deviation

The top left indicator showed the lateral and vertical deviation with respect to the selected glideslope

approach angle. The FAA members were asked to observe:

• Whether this main output and the other position and attitude indicators on screen provided reasonable
guidance

• Whether they matched the output of Avidyne’s IFD.

41 Daedalean / FAA VLS Project Report — Chapter 4

Figure 16: Flight 1 altitude (left) and horizontal (right) profle.

The glideslope and lateral deviation angles were given with respect to apex points 1000 m and 2000 m beyond

the runway threshold, respectively.

Human factors

Finally, the FAA members were also asked to record any human factor concerns.

4.2.2 Flight 1

The frst fight took o� from Orlando Melbourne International (KMLB) at 12:37 EDT (16:37 UTC) and

covered 140 NM over one and a half hours. Figure 16 shows the fight path and altitude profle. The frst four

approaches were carried out at X26-10 (trained) runway, while the following four approaches were performed

at KVRB-12L, which had not been seen during training. The fnal landing was back at KMLB. It was a

daytime fight with clear weather and some scattered clouds.

Regular approaches

Figure 17 shows the post-processed data from the frst approach at X26, where the system performed as

expected and provided accurate landing guidance for a four degree glideslope approach.

The system outputs are compared to GPS data, due to a lack of more precise ground truth available.

Therefore, discrepancies in the VLS and GPS track might be caused by GPS inaccuracies on top of the visual

system errors. The GPS data is presented with an assumed uncertainty of 10 m (32 ft).

In the frst approach the VLS engaged at approximately 1.9 NM from the runway. The VLS signal stays within

a 0.3◦ GPS corridor for most of the approach. The confdence in the fltered estimate is also signifcantly

better than for the raw neural network estimates.

A video of this and all other test approaches with the VLS guidance overlays are available in the shared folder

https://drive.google.com/drive/folders/1ra1rYMLfR6U5rbgfjO02hxu8dySShV9R.

The system performed well during the other three approaches on the trained runway (X26). The remaining

approaches are discussed in Appendix A.

Robustness test approaches

Approaches two and four tried to stress the system by introducing random, purposeful deviations in the

landing course with high turning rates. The VLS momentarily lost acquisition of the runway and re-acquired it

after a few seconds.

This was due to the limited power of the onboard computer (an earlier generation of prototype hardware, see

Section 6.6), which allowed to run the Runway detector every 1.4 seconds only. In the interval between

detections the system extrapolates the location of the runway in the image based on image rotation, which

https://drive.google.com/drive/folders/1ra1rYMLfR6U5rbgfjO02hxu8dySShV9R

42 Daedalean / FAA VLS Project Report — Chapter 4

Figure 17: Telemetry from Flight 1, Approach 1, including VLS guidance and GPS measurements. The green

corridor represents a GPS uncertainty of 32 ft (10 m) signal, whereas the red corridor represents the uncertainty

of the VLS estimated with the Kalman flter described in Section 5.5 (one standard deviation). The GPS track

was corrected during postprocessing using the altitude measured at touchdown.

�

43 Daedalean / FAA VLS Project Report — Chapter 4

(a) Sun glare during approach 4 (b) Low light during approach 10

Figure 18: Challenging conditions during approach Flight 2. Note that the camera uses fxed aperture and a 5

ms limit to exposure, limiting the amount of light received by the system, so the system display images appear

darker compared to what was perceived by human eyes.

can lead to temporary loss of lock during aggressive maneuvers. A production version of this system will

include more powerful hardware, which will make these e ects highly unlikely. However, the possibility of losing

acquisition of the runway must be considered in the safety analysis of the system. The probability of having

lock interruptions is analyzed in Section 8.7, while a fault tree analysis is given in Section 8.1.

Untrained runway approaches

During the approaches on the untrained runway KVRB-12L, the system performed well in two cases. For

approaches six and eight, there were multiple runway detections, including a parallel runway that came frst

into the camera view. As a result, the system did not manage to establish track on the target runway. The

system identifed that it was not in a healthy state (the uncertainty of its estimates was very high) and did not

provide any guidance. A production version of this system for the pilot assistance use case will present various

detections (if present) and will ask the pilot to confrm the target runway. However, handling of false positives

is an important topic that needs to be addressed in the safety analysis. Another interesting false positive

occurred while the aircraft was cruising between airports, when VLS briefy tracked a river with two bridges

that had the appearance of a runway with its threshold and far ends. The probability of having false positives

is also analyzed in Section 8.7. The system also performed well during the fnal 8 degree glideslope approach

at KMLB.

4.2.3 Flight 2

The second fight also took o� from KMLB before sunset, 18:06 EDT (22:06 UTC), and covered 166 NM

over one hour and 45 minutes.

• The frst three approaches were carried out at KVRB-12R, which had not been seen during training.

• This was followed by seven approaches on X26-23, for which there was a very small amount of data in
the training set.

• FAA pilots stated that the system did not detect the runway during the evening conditions even through
the FAA pilots can visually detect and see the runway.

The frst few approaches had sun in the camera view and severe glare (see Figure 18), while later approaches

were done during and after sunset. The fnal landing at KMLB was performed in low light conditions, well

outside the ConOps, and VLS did not engage due to Runway Detector not being able to identify a runway in

the camera image.

�

44 Daedalean / FAA VLS Project Report — Chapter 4

Despite the challenging conditions, the system performed well during all approaches at the untrained

KVRB-12R runway, even during the stress tests in approach two, which featured high turning rates as in the

cases described in the previous section.

The data for the frst approach shows the VLS guidance slightly underestimating the distance to and the

altitude above the runway, even though the glideslope angle stays within the 0.3 degree corridor. The cause

for this o� set was the runway width coming from the database being slightly o� . As discussed in

Section 5.2.1, the runway width from the database is required to resolve scale ambiguity. Discrepancies or

incorrect data coming from a database need to be considered in a safety analysis. This e ect is included in the

fault tree in Section 8.1, analyzing conditions that can lead to the system outputting erroneous guidance.

During the frst of the seven approaches on X26-23, the VLS engaged at approximately 1.4 NM from the

runway. The distance at which the system frst engaged decreased gradually with the amount of light, but

always stayed above 1 NM. Figure 18 shows the conditions during the fnal approach, where the runway was

barely visible but VLS still provided useful landing guidance.

The remaining approaches are discussed in Appendix A.

Detector

Detector

NN

Runway

Extractor

NN

Pose

Converter

Runway

Database

runway
width

Filter
to ARINC

bus

Relative

position &

attitude (raw)

Original image placeholder Cropped image placeholder Identified runway placeholder

Detector

Tracker

1284096

1283000

runway slope

5 System design

This chapter provides a description of the architecture and implementation of the Visual Landing System

(VLS) which is the topic of this project.

This information will be used as an input to Sections 6 and 8 (application of the W-shaped process and safety

assessment).

5.1 Overview

For simplicity, the runway selection and disambiguation are not discussed in this chapter, and it is assumed

throughout that a correct match between a detected runway and a database entry has been obtained.

However, it should be noted that a runway must be selected for the system to operate, otherwise no guidance

is provided.

With that in mind, Figure 19 gives an overview of the di� erent software components in the VLS.

Figure 19: High-level overview of the Visual Landing System. Both neural networks (Runway detector and

Runway extractor) contain an out-of-distribution detection subsystem not pictured in the diagram.

45

46 Daedalean / FAA VLS Project Report — Chapter 5

The system as illustrated in Figure 19 consists of the following components:

1. The main input to the system are 12.3 megapixels images (3000 × 4096 pixels) captured by a
forward-facing global shutter camera at 6 frames per second. See Figures 3 and 15 for illustrations.

2. These images are fed to a Detector subsystem tasked at detecting and tracking runways in the feld of

view. This can be seen as the same system as the Visual Traÿc Detection analyzed in [CoDANN21], a

combination of an object detection neural network and an object tracker (classical software).

3. Once a tracked runway has been selected, a 128 × 128 pixels crop centered on it is passed to a Runway
extractor neural network, tasked to extract the runway geometry, encoded as six parameters.

4. With the runway width obtained from a database, these six parameters suÿce to compute the relative

position and attitude of the camera with respect to the runway, using the Pose Converter component.

5. A Filter component processes the possibly noisy instantaneous pose estimate to produce the fnal

output, including deviations from the desired glide path and uncertainties for all the output quantities.

The runway slope from the database is used to compute altitude and glide slope corrections.

Given that the detection system (neural network and tracker) are analyzed in [CoDANN21], only the other

components are discussed in this chapter. In general, while the safety assessment in Section 8 considers the

entire system, here the focus is on the W-shaped process and learning assurance for the Runway

Extractor/Pose Converter components.

5.2 Runway extractor neural network

The following sections describe the output and architecture of the Runway extractor neural network, including

uncertainty estimation.

As introduced above, the role of this component is to extract geometrical information from a 128 × 128 pixels
runway image crop that is suÿcient for the Pose Converter to compute the camera pose relative to the

runway.

5.2.1 Pose from image crop and runway parametrization

Camera pose from image parameters

As the camera pose has 6 degrees of freedom (position and rotation), 6 parameters are required to recover it.

In the case of VLS, these are obtained from a camera image.

Runway extract. NN Pose Converter
Runway crop 6 image parameters 6 DoF pose

The survey [Xu+17] analyzes the computation of camera poses from lines in images with known 3D positions

(e.g. threshold and sidelines): each 2D/3D match provides two parameters (albeit not necessarily independent

from other matches). The exact parameters used by the VLS are discussed below.

Scale ambiguity

An inherent problem with monocular computer vision is the scale ambiguity due to the 3D to 2D mapping. To

recover the scale, the system relies on the availability of physical runway widths from a

traditional [ED-76A/DO-200B] database. After the operator has locked the system on the selected runway,

its width is retrieved from the database and used in the Pose Converter component.

x ∈ X γ(x) ∈ � A(γ) ∈ SE(3)

47 Daedalean / FAA VLS Project Report — Chapter 5

Figure 20: Runway camera image with corners obscured by trees.

Parameters choice criteria

There are multiple ways to select six image parameters that allow to reconstruct the 3D relative pose up to

scale. For example, one may use the runway sidelines, the threshold, corner points, horizon, or other semantic

objects in the image. Each parameter might then be represented in multiple ways, e.g. coordinate system, as

an absolute value, relative to an o� set or relative to another parameter/object, etc.

The following requirements should be considered:

• To ensure that the system can generalize to arbitrary runways, these parameters should correspond to
standardized ones, e.g. according to [AC150/5340-1M].

• The sensitivity of the pose estimate (computed by the Pose Converter) with respect to the parameters,
which will depend on their choice and representation.

For example, there would be multiple problems with using the four runway corners (4 × 2 = 8 non-independent
parameters) only:

• The corners are not always visible: they are never visible past threshold and can be obscured by trees,
weather, etc. See Figure 20.

• A small error in the prediction of any of the four corners can have a large impact on the pose estimate,
e.g. the altitude of the camera depends on the angle between the runway sidelines, so that a small error

in the corner predictions will result in a large error in the altitude estimate.

Visualization

Regardless of the parametrization, given that it fully determines the pose, the runway can be visualized on the

image, as illustrated at the bottom left of Figure 14, fully characterizing the non-uncertainties part of the

neural network output.

Parameters

The system analyzed in this report adopted the parametrization illustrated in Figures 21 and 22 with the

following six parameters:

• Coordinates (x, y) of the runway vanishing point in the image frame.

• Inclination angle in radians.

• Left-right angle in radians.

• Bisector angle β in radians.

48 Daedalean / FAA VLS Project Report — Chapter 5

vanishing

point inclination
y angle

bisector angle

end

threshold

β

a

b

x

far left-right

angle

a = far end distance

a + b = threshold distance

Figure 21: Prediction (top numbers) and ground Figure 22: Description of the in-camera runway

truth (bottom numbers) of the 6 runway image geometry.

parameters.

• Threshold distance a + b in pixels.

In the notations above,
� �

γ = x, y , inclination angle, left-right angle, β, a + b ∈ � ⊂ R2 × [0, 2π) × [0, π]2 × R≥0,

where image coordinates (x, y) are normalized so that the points in the image have coordinates in [0, 1]2

(however, the vanishing point may lie outside the image).

Section 8.5 provides a detailed analysis of pose sensitivity with respect to this parametrization.

Since these parameters defne a 1-to-1 mapping from the runway geometry to the camera pose, the terms

“camera pose” and “runway geometry” will be used interchangeably below.

5.2.2 Uncertainties

A machine learning model can be seen as a traditional sensor, whose output might be noisy or imprecise

because of sensor quality or of inherently diÿcult measuring conditions (see also [CoDANN21, Section 5.3]).

As with any sensor, there are corresponding “measurement” uncertainties, as defned by [ISO98-3].

Two types of uncertainty are usually distinguished (see [DD09; Pea+18; KG17]):

1. Epistemic/model uncertainty, due to sensor/model imprecision. For a machine learning model, this can

originate from model bias or variance (see [CoDANN20, Section 5.3.2]). Due to their large number of

parameters, the concern for deep neural networks is mostly variance, and a large epistemic uncertainty

might correspond to a lack of data or a misidentifcation of the operating space.

2. Aleatoric/aleatory/irreducible uncertainty, due to the inherent measurement diÿculty and randomness.

For example, there is an irreducible uncertainty in determining the runway parameters from an image

crop of fxed resolution, and factors such as weather conditions might increase the uncertainty of

measurements, regardless of the model (including trained human annotators).

In other words, it is not possible to exactly measure γ(x) ∈ � from an image x ∈ X . Rather, as in
Equation (2.1), only γ(x) + εx can be measured, where εx is a small error whose distribution depends on

x and is such that E(εx) = 0.

The CoDANN reports discuss uncertainty sources, estimation and validation in [CoDANN20, Section 6.6]

and [CoDANN21, Chapter 5].

Estimating uncertainties

The approach to estimate uncertainties in the Runway extractor neural network corresponds to the one

described in [LPB17; NW94]:

49 Daedalean / FAA VLS Project Report — Chapter 5

• The aleatoric uncertainty can be represented as a joint distribution for (x, γ) ∈ X × �. Instead of
designing the model to predict only γ(x) = E(γ | x), the full marginal distribution γ | x is estimated.
This is not a circular argument as the aleatoric uncertainty is not a property of the model, unlike the

epistemic uncertainty.

• The epistemic uncertainty is estimated using an ensemble M of models.
In machine learning, Ensembling (see [ESL01] and the discussion in [CoDANN20, Section 6.3.3])

consists of running multiple models during inference and combining their outputs, often yielding stronger

performance than any of the individual models, as errors between the models might be di� erent and/or

uncorrelated.

Measuring the disagreement between predictions can also allow estimating the epistemic uncertainty, as

the models exposed to subspaces of the operating space not properly covered during development might

have more diverse predictions than otherwise, where all predictions would be close to the true value

(assuming low aleatory uncertainty).

However, care must be taken to justify that the models in the ensemble do not have common failure

modes. This is similar to the traditional concept of multiple-version dissimilarity [ED-12C/DO-178C,

Section 2.4.2].

See also the recent survey [HW21].

Following [LPB17], γ | x, M can be seen as a uniformly-weighted mixture model (see [ESL01, Section 6.8]),
whose density function is then the pointwise average of the density function of the ensemble members. The

estimates for the frst two moments (mean and variance) are then

X
γ̂(x) =

1
γ̂M (x) ∈ R6 (5.1) |M|

M∈M � �
d d ∈ R6×6

X
Var(γ | x) = 1

VarM (γ | x) + γ̂M (x)γ̂M (x)t − γ̂(x)γ̂(x)t ,|M|
M∈M

where Var(γ | x) is used to denote the covariance matrix (Cov(γi , γj | x))1≤i ,j≤6 and quantities with “hats”
are estimations (in other words, γ̂M (x) = E(γ | x,M), γ̂(x) = E(γ | x, M), etc.).

Model for the aleatoric uncertainty

Beyond decomposing the uncertainty into aleatoric and epistemic components, a further split of the aleatoric

uncertainty can be considered (see Figure 23):

• Aleatoric uncertainty due to the current pose (and therefore true value of the image parameters γ ∈ �):
the parameters will be more diÿcult to predict, regardless of the model, for a far-away runway, or one

seen from an extreme side-way angle.

• Aleatoric uncertainty due to image conditions (e.g. fog or luminosity conditions).

Uncertainty

Aleatoric Epistemic

Pose Image

Figure 23: Uncertainty decomposition.

Assuming regular image conditions, the aleatoric uncertainty should be mostly caused by the current pose.

50 Daedalean / FAA VLS Project Report — Chapter 5

5.2.3 Neural network architecture

Inputs

From Section 5.2.1, the Runway extractor network inputs are 128 × 128 pixels image crops around runways.
More precisely, the detector neural network produces tight bounding boxes (with sides parallel to image)

around runways, which are expanded to three times their size and resized to 128 × 128 pixels.

Under the notations above, the input space X ⊂ R128×128×3 is then the space of crops that can arise given the
Concepts of Operations (see Section 3), the specifcation of the detector neural network and the process

described above. Only crops containing runways are considered as valid inputs, i.e. false positives from the

detector network are excluded.

Outputs

To allow an explicit loss function, an explicit distribution for γ | x is needed. A natural choice is a
6-dimensional normal distribution N(γ(x), �(x)) around the true parameters γ(x) ∈ �, fully characterized by
its covariance matrix �(x) ∈ R6×6 .

Given that �(x) is a symmetric, positive-semidefnite matrix, it can be written as �(x) = LLt for a triangular

matrix L ∈ R6×6 (Cholesky decomposition), and therefore parameterized by (62 − 6)/2 + 6 = 21 parameters.
More specifcally, the domain is restricted to positive defnite matrices, as no measurement has zero

uncertainty. This ensures that the covariance can be inverted in the subsequent analysis, and avoids numerical

instabilities during training. The network outputs the unique [PB96] log-Cholesky decomposition of �(x),

where the diagonal of L is parameterized by the logarithm of its entries.

Therefore, the output of each ensemble member should be, for each x ∈ X ,

� �
ˆR

6→֒ R
21 ×ˆγ̂(x), L(x) ∈ R6 × R6×6 , �(x) = L̂(x)L̂(x)t ∈ R6×6 ,

corresponding to an estimate (mean) of the six image parameters and of the aleatoric uncertainty.

Architecture

A classical convolutional neural network, well-suited for image processing, is used for each ensemble number,

with a MobileNetv1 backbone [How+17] (1.7 million parameters) followed by a regression head (550,000

parameters).

Loss function

The loss function corresponds to a natural maximum likelihood and is discussed in Section 6.3.

Ensembling

Four models of the same architecture are used for the ensemble, trained similarly except for di� erent weight

initializations (random, driven by a seed for reproducibility). This is discussed in Section 8.3.1.

At inference time, the predictions of each ensemble member are computed, and then combined following

Equation (5.1), providing an approximation of the parameters γ as well as the uncertainty (aleatoric and
epistemic).

The complete architecture is illustrated in Figure 24.

5.3 Out-of-distribution detection

A crucial assumption to ensure performance guarantees for neural networks on unseen data (see Section 2.1)

is that the input data comes from the operating space X : while an input x ∈ X during operations will never
have been seen during training, learning assurance ensures that the model learned enough about the true

function f : X → Y during development to make a quantifably accurate prediction for f (x).

On inputs that do not belong to X (but are still valid inputs to the system, e.g. images), called

51 Daedalean / FAA VLS Project Report — Chapter 5

128

128

6 21

6 21

6 21

6 21

OOD detector

[0, 1]

6 21

Out-of-distribution

detection

Regression output &

uncertainty

Neural network

×4

Figure 24: Runway extractor model architecture with four ensemble members.

Out-of-distribution (OOD) inputs, the model could possibly have any behavior and no performance guarantees

can be made.

Therefore, a component able to detect OOD inputs during operation constitutes an important part of systems

that use machine learning: it is more desirable that the system indicates that performance cannot be

guaranteed due to unexpected inputs rather than producing untrustworthy outputs.

Techniques and validation

Out-of-distribution detection is a fairly active research topic, and some generic techniques are surveyed

in [CoDANN20, Sections 6.2.8, 6.6.3] and [CoDANN21, Section 5].

Several OOD detectors might be used, covering di� erent types of OOD inputs (see [CoDANN20, Section

6.6.2] for some examples), models/input spaces, or having di� erent failure conditions. A complete safety

assessment should analyze the precision and recall of the OOD detection component.

These techniques can be validated with in-distribution and out-of-distribution data. As it does not need to be

annotated, this data requires less resources to gather than the one for model training.

OOD detection for the Runway extractor neural network

This section presents two OOD monitors used in the Runway extractor network, the frst one using only the

input images and based on the ConOps, and the second one making use of the uncertainty estimation

introduced in Section 5.2. They are evaluated in the safety assessment chapter (Section 8.4).

An important type of out-of-distribution input for this neural network corresponds to false positives from the

Runway detector, i.e. image crops that do not contain a runway.

OOD detection for the Runway detector neural network

The Runway detector neural network has a di� erent input space (the full 12 megapixels images instead of

runway crops). There too, OOD detection could be performed solely based on input images or using the

network (e.g. applying ODIN [LLS18] to the detection confdences).

5.3.1 Operating conditions and image quality metrics

Section 3 presented detailed operating conditions for the system, including both operational volume and visual

requirements.

The following out-of-distribution monitors are implemented with traditional software (no machine learning).

�����

�����

 �����

�����

52 Daedalean / FAA VLS Project Report — Chapter 5

Operational volume

A rough pose from another system (e.g. GNSS and IMU) is used to check that the current conditions are part

of the operational volume.

Along with the runway database, this also allows to determine whether a runway could be present in the

current image. In that case, a detection may or may not be displayed, given that its selection would not be

possible anyway.

Image quality metrics

In addition to state-based parameters, image quality metrics can be computed on the inputs, deemed

out-of-distribution if a metric falls outside the range determined by the visual requirements in Section 3.2 or

on values of the metrics measured on the development datasets (training, validation and testing).

Examples of image quality metrics are brightness, contrast, entropy and sharpness; see also [CoDANN21,

Section 5.1.2].

Figure 18 illustrates image conditions where meeting performance requirements might be challenging.

5.3.2 Uncertainty-based OOD detection

It has been shown that confdence outputs from neural networks may be used for out-of-distribution detection

of inputs x ∈ X , especially when performing post-training confdence scaling [LLS18; HG17].

Given the use of an ensemble to estimate epistemic uncertainty, the predicted variance dVar(γ | x) ∈ R6×6

(Equation (5.1)) is a good candidate for out-of-distribution detection going beyond human-designed features

(Section 5.3.1). This is analyzed in [LPB17, Sections 3.5-6].

As the components of γ ∈ � have di� erent dimensions (e.g. lengths and angles), the matrix is renormalized
with the in-training means

s X1 dσ̄ i = Var(γ | x)i i ∈ R (1 ≤ i ≤ 6)|Dtrain|
x∈Dtrain

and the out-of-distribution score of an input x ∈ X is defned as
! dVar(γ | x)i ,j

OODscore(x) = (5.2)
σ̄ i σ̄ j

1≤i ,j≤6

for some matrix norm || · ||. An input x is deemed out-of-distribution if

OODscore > τood

for some fxed threshold τood, e.g. a large percentile of the score observed during training.

The precise value of τood depends on a trade-o� between the acceptable number of false positives

(in-distribution inputs classifed as OOD) compared to false negatives (OOD inputs failed to be classifed as

such). This is to be decided with the full system in mind (e.g. false negative rate from the Runway detector

component). See Section 8.4.

Note that this might classify as OOD a sample with high aleatoric uncertainty. An alternative would be to use

the variance X1d dVarM∈M(γ̂M (x)) = Var(γ | x) − VarM (γ | x) (5.3) |M|
M∈M

(ensemble disagreement).

53 Daedalean / FAA VLS Project Report — Chapter 5

5.4 Pose converter

In the notations of Section 5.2.1, the Pose converter :

• Computes the aircraft pose A(γ̂(x)) ∈ SE(3) with respect to the selected runway from

– The estimate γ̂(x) produced by the Runway extractor neural network;

– The runway width from the database.

• Propagates the corresponding uncertainties.

This is implemented using traditional software, with a closed-form formula for the function A.

5.5 Filtering and tracking

The Runway detector and Runway extractor work with single-frame images as sole input, not using

information from previous frames nor the aircraft movement.

The output of both is passed through a respective tracker component (see Figure 19) to take advantage of

this information and post-process the possibly noisy detections/pose estimates.

Like the Pose converter, these components are implemented with traditional software.

5.5.1 Runway detector tracker

The role of the Runway detector tracker is to maintain a list of tracks over time, built from the output of the

Runway detector neural network. The tracks should be in one-to-one correspondence with runways in the

image matching the ConOps (Section 3). Each track consists of a series of bounding boxes and confdences

as a function of time, grouped by a unique track identifer.

The tracker reduces the false positives from the neural networks, and mitigate temporarily missing detections

(i.e. false negatives) by extrapolating existing tracks.

To associate detections to tracks, a 2D Kalman flter, with a model for the relative motion of runway

bounding boxes in the image, is used for each track. The movement of the camera is estimated between

frames using image features to distinguish ego motion from object motion.

At each camera frame:

• For each result of the detector neural network (a bounding box with a confdence):

– If it is closer than an association threshold to the predicted (by the Kalman flter) position of a

track, it is associated to this track (and used as a new measurement by the flter).

– If it is not associated to any of the tracks, a new track is created.

• Tracks that did not have an associated neural network detection for more than nunlock frames are
removed from the list of tracks.

• The confdence of each track is updated based on the flter state, including the confdence of the
associated detections.

A track is displayed for selection only if it contains at least nlock detections and has a high enough confdence.

The neural network outputs are processed only if they are considered valid by the out-of-distribution

component (Section 5.3).

54 Daedalean / FAA VLS Project Report — Chapter 5

5.5.2 Pose flter

From Section 5.2, the Runway extractor produces at each frame (when a runway is locked)

� �
b ∈ � × R6×6γ̂t , �t ,

estimating the runway image parameters and the uncertainty (aleatoric and epistemic).

Applying the Pose converter, this gives a pose At = A(γ̂t) ∈ SE(3), and �b t can correspondingly be propagated
to the uncertainty of this estimate.

With the analogy to classical sensors from Section 5.2.2, a 6-dimensional extended Kalman flter can be

applied, with the poses being the observations, and the movement model modeling the aircraft’s descent

according to the Concepts of Operations Section 3 (see for example [LJ03]). The observation model is

nonlinear given that A is not.

In the architecture described in Section 5.1, the pilot controls are not taken into account by the flter.

¯

¯ ∈ R6×6
At each time step, the output of the flter is a smoothed/corrected prediction At ∈ SE(3) and uncertainty
�t .

The ability of the flter to smooth the intermediary outputs to produce the fnal system outputs is analyzed in

Section 8.

6 Application of the W-shaped process

The goal of this chapter is to analyze the development of the Visual Landing System considered in this report

through the W-shaped process from [CoDANN20; CoDANN21; EAS21] surveyed in Section 2.

Requirements allocated to ML
component management

ML requirements
verification

(Sub)system
requirements & design

Independent data
and learning verification

Data
management

Learning process
management

Model
implementation

Learning process
verification

Model
training

Inference model
verification & integration

(Sub)system
requirements verification

Figure 2: The W-shaped process from [CoDANN20; CoDANN21; EAS21].

Given the scope of the project and confdentiality reasons, this is not a full certifcation exercise, but rather a

detailed overview of a complete analysis. Moreover, given that neural networks for runway detection and

traÿc detection (very close to the Runway detection component) are already analyzed in [CoDANN20]

and [CoDANN21] respectively, the focus is put on the Runway extractor neural network (Section 5.2). Finally,

for simplicity, backward steps in the process (such as collecting more data during training or after an

unsuccessful learning process verifcation; see remark at the end of Section 2.2) are not included.

Note

Details of some of the activities are provided in Sections 5 and 8. Their contents should be considered fully

part of the W-shaped process.

6.1 Requirements management

The W-shaped process starts like a typical system item development: development and validation of

requirements. During the system design phase the use of a NN within an item of the architecture is identifed

and justifed. For the item containing the NN, requirements are created, either traced to or derived from

high-level system requirements. For further details on this process see Section 7.

The outcome is a set of requirements, some of which are identifed as being software or hardware

requirements (depending on the chosen platform) to be developed following [ED-12C/DO-178C;

ED-80/DO-254] guidance. The remaining requirements, which are identifed as neural network requirements,

are developed following the W-shaped process. It is important that the system requirement validation process,

as outlined in [ED-79A/ARP4754A, Section 5.4], takes into account the presence of a neural network, and

verifes the completeness and correctness of the requirements defned for the item containing the NN.

Table 5 gives a sample of the requirements needed in order to develop a software item containing a neural

network. The item, in this case called VLSGeomNN, is a software item which takes as input a pre-processed

128 × 128 pixels image which contains a runway. It uses a neural network to identify geometrical features of
the runway (e.g. threshold, side limits) and then outputs the geometry of those features in the image.

55

56 Daedalean / FAA VLS Project Report — Chapter 6

Table 5: Sample Requirements

Requirement SW/NN Note

VLSGeomNN shall be capable of initiating a CNN with up to 50 layers. SW 1

VLSGeomNN shall be capable of executing a CNN inference step in less

than 5 ms.
SW 1

VLSGeomNN shall output runway geometry corresponding to a runway

within the image.
NN 2

VLSGeomNN shall output aleatoric and epistemic uncertainty of the cor-

responding values in the image.
NN 2

VLSGeomNN shall identify runways that are completely visible in the

image.
NN 3

VLSGeomNN shall identify runways in images whose brightness > 30 and
< 140.

NN 3

VLSGeomNN shall identify runways in images whose sharpness > 4.5. NN 3

VLSGeomNN shall identify runways in images whose contrast > 25 and
< 95.

NN 3

VLSGeomNN shall identify runways with a distance > 0.3 and < 2 NM. NN 3

VLSGeomNN shall identify runways with an altitude di� erence > 100
and < 2300 ft AGL.

NN 3

VLSGeomNN shall identify runways with an angular di� erence > 2.5◦

and < 8◦ .
NN 3

Notes:

1. Software requirements are needed for the implementation of the inference engine to cover initialization,

capacity, performance, etc. These are to be developed according to [ED-12C/DO-178C].

2. These requirements drive the design of the NN model architecture, including defning the format of data

in and out of the NN itself. They are input to the Learning Process Management phase of the

W-shaped process.

3. Lastly, requirements which drive selection of data for training, validating and testing of the NN. They

describe the operating space, as described below, and are input to the Data Management phase of the

W-shaped process.

6.1.1 Operating space

The operating space for the Runway detector neural network is the space of 12 megapixels RGB images that

can arise within the conditions described in Section 3. The operating space for the Runway extractor neural

network (runway crops) is described in Section 5.2.3.

Operating parameters

Explicit operating parameters are derived from the ConOps (Section 3) and captured in the requirements to

facilitate the data collection and analysis.

The operating volume is parameterized with:

57 Daedalean / FAA VLS Project Report — Chapter 6

Figure 25: Runways in various environmental conditions: sun in front, clear, overcast, sun from behind, clockwise

from top left.

• Lateral deviation angle; • Azimuth;

• E� ective glide slope angle; • Pitch;

• Distance to runway; • Roll.

The variability of environmental condition is captured with (see examples in Figure 25):

• Sun elevation angle and azimuth; • Season;

• Weather: clouds and precipitation; • Runway lights (on/o�).

The variability in the location and in the runway is captured with (see examples in Figure 26):

• Background (type of terrain surrounding the • Runway type, e.g. precision or non-precision;
runway);

• Multiple runways (whether parallel runways are
• Runway width and length; present in view).

The joint distributions of these parameters should be derived from the ConOps (see in particular Table 3), in

addition to techniques to capture more complex aspects of the input space (see Section 2.3.1). This will not

be discussed here for the sake of brevity; the analysis in Section 8.2.1 shows a posteriori distributions.

6.2 Data management

See Section 2.3.1 for generic information about this development step. This section describes in particular

how data (including annotations) is created for the development of the VLS.

58 Daedalean / FAA VLS Project Report — Chapter 6

Figure 26: Various runway locations: multiple, visual and precision instrument runways, anticlockwise from the

top.

6.2.1 Datasets

Over 200,000 annotated1 real images (i.e. samples) were used in this project for the development of the

neural network described in Section 5.2.

In addition, over 30,000 synthetic samples were used. These are split into the following datasets (following

Section 2.1.2):

• The training set, consisting of approximately 85% of both real and synthetic samples, further
augmented with image transformations (see Section 6.3) reaching approximately 100 million labeled

training samples.

• Validation sets, used to assess the generalization capabilities of the model over various domains.
No augmentations are performed on validation sets. Each of these validation sets contains

approximately 2,000 images:

1. Training (real) set represents a random selection of real samples excluded from training. Images in

this set may be very similar to some images in the training set, captured a fraction of a second

before or after a training sample. Performance on this set is expected to be very close to that on

the training set.

2. Training (sim) set represents a random selection of synthetic samples (see Section 6.2.5) excluded

from training. It is not indicative of the fnal system performance in the real world, but should

indicate how close simulated data distribution is to the real one.

3. Excluded approaches. Three more sets represent a collection of whole landing sequences excluded

from training. Two were captured in Europe (Buochs and Brno airfelds) and one in the USA

(Florida). Performance on these sets is indicative of expected performance in the real world, on a

runway where training data has been gathered.

1For reference, one frame requires roughly 20 seconds to annotate by a trained operator.

59 Daedalean / FAA VLS Project Report — Chapter 6

4. Excluded runways. The fnal set represents a collection of approaches on runways that are

completely excluded from the training set. This validation set is indicative of expected performance

on runways where no training data has been collected.

• The test set is used to obtain an unbiased assessment of the performance of the fnal model. The
collection and annotation of the test set was omitted from this project, given that the demonstrated

system is still in its design phase. See [CoDANN20, Section 6.2 and 6.4] for a detailed explanation of

the role of the test set. Other important constraints include the resources, time and fnancial aspects

that would be required to create a suitable test set. Section 6.5.1 explains how the test set is replaced

to still be able to follow the W-shaped process in practice.

As explained in Section 2, the three datasets should be representative independent samples of the operating

space, which the Data management step should ensure.

The data was collected at 14 airports in Europe and the USA.

The following sections present the data handling, collection and annotation processes, including the use of

simulation. A data coverage analysis is included in Section 8 (Section 8.2).

6.2.2 Data handling

During development, for datasets creation and later in the process, substantial amounts of data need to be

collected, stored, and processed.

To satisfy the requirements from [ED-76A/DO-200B] (traceability and integrity), as well as internal

requirements such as accessibility, a unifed artifact storage is used.

Artifacts are sets of fles, such as:

• All imagery collected by a camera during a • A dataset to be used for training or validation;
fight;

• An annotation request or response; • A trained neural network model.

An artifact storage is an internal system that allows upload and read access for artifacts, but no deletion or

modifcation. Each artifact is uploaded into the storage system atomically (i.e. as a single action). All

uploaded artifacts are stored indefnitely on Daedalean’s data servers.

Integrity and traceability

An MD5 [RFC1321] hash is generated over an artifact contents to guarantee its integrity. If an artifact is

produced from other artifacts (sources), their hashes are recorded in the artifact for traceability, forming a

block chain. Using this approach, all source data used to produce a given artifact can be recursively found and

its integrity verifed. A typical sequence of artifacts created to generate an inference model is illustrated in

Figure 27. Each step is described in details below.

Reproducibility

For automated steps, the artifact stores the specifc version of the tool and parameters used to produce it.

Manual steps follow precise requirements and also allow for reproducibility up to human error. This allows the

artifact to be recreated from the sources if needed; in case of automated step, the artifact can be recreated

exactly.

Flight
Recording

Annotation
Request

Annotation
Response

Dataset
Trained

Model

Inference

Model

60 Daedalean / FAA VLS Project Report — Chapter 6

Figure 27: Sequence of artifacts culminating in an inference model.

6.2.3 Data collection

The frst step in creating the development datasets is to collect imagery from the operating space X identifed
in the requirements (see Section 6.1).

For this, a substantial number of data collection fights were performed using Daedalean’s equipment,

mounted on rented or partner aircraft.

Flight test data collection

Additional data was gathered in the fight test area in Florida, specifcally for the purpose of these fight tests

(see Section 4). That took three 2-hour data collection fights with multiple touchdowns at X26 and X59

airports, allowing us to collect over 40 approach sequences. These include 25 approaches on Sebastian

Municipal airport runway 10 and 4 approaches at Melbourne International runway 9L, which were visited

during demonstration fights. Each approach sequence takes approximately 90 s, allowing us to gather

90 s · 6 fps · 40 = 20, 000 samples in the area.

Hardware/software

The data collection kit consists of a camera assembly and a computer similar to the ones used in the fight

test setup described in Section 4.1. During data collection fights, the onboard computer is responsible for

saving all camera images, uncompressed, in the same format as they are consumed by the system in fight.

The computer contains replaceable SSDs to store the collected imagery.

Additional sensors may be connected to the computer and recorded (e.g. GNSS and IMU). The computer may

also perform other tasks during the collection, as long as they do not interfere with the data collection itself.

The specifcs of the kit may vary from the operational software/hardware, except for the cameras: while

machine learning models can be robust to changes of input sensors, it is simpler to ensure consistency.

Upload

After each fight, SSDs with the collected imagery are removed from the onboard computer, and then image

data artifacts are generated and uploaded into the artifact storage. All metadata (e.g. system confguration,

personnel on the fight) is also recorded in a fight log, and all non-image data recorded in fight is also

uploaded into the artifact storage.

Coverage

Coverage analysis, as described in Section 8.2, is done periodically to assess possible gaps in the data

coverage, guiding further data collection.

Test data

Right after the data collection is completed, some recordings are marked as belonging to the “test” dataset

(see Section 6.2.1). To enforce that the test data is not used in system design, the rest of the process is not

61 Daedalean / FAA VLS Project Report — Chapter 6

followed for them, until the fnal model verifcation has to be performed. These recordings are not annotated

and are excluded from the entire analysis during the system design stage.

6.2.4 Annotation process

Once collected, the image data has to be annotated. In the language of Section 2.1.2, this means determining

from images x ∈ X the value of the function(s) f (x) that the neural networks should approximate. In the case
of the VLS, this is the runway location (Runway detector) in the image as well as the image parameters

(Runway extractor): see Section 5.

This manual process is called annotation, performed by humans trained at the task and following precisely

defned processes and requirements. The annotators look at the camera images x ∈ X , identify runway(s),
and mark them using an annotation tool (Figure 28). The annotation tool is based on an open-source CVAT

(https://github.com/openvinotoolkit/cvat), with proprietary modifcations to aid runway annotation,

integrate with Daedalean’s infrastructure, and to support the process described here.

The output of this process is a set of pairs

(x, g(x) + εx) , where:

• εx is a small error due to inherent task diÿculty and human errors; aleatoric and epistemic uncertainty
as discussed in Section 5.2.2 for the model.

• g : X → Y is a function from which the target functions f for the Runway detector and Runway
extractor can be explicitly computed. That way, a single annotation can be used to train both networks.

The values g(x) + εx are often called labels or annotations. The term ground truth is also used, even though

it should be reserved for the values f (x).

Each of the 200,000 real samples used in the development are the result of this manual process.

Annotations quality

Human errors should be kept minimal at all costs. Systematic ones must in particular be avoided as they might

train neural networks to replicate them and not be identifed by training and evaluation metrics (which compare

neural network outputs to annotations themselves), therefore causing issues late in the development cycle.

Thus it is important to verify the annotation quality by manual inspection, statistical analysis, and comparison

to independent data sources (e.g. GNSS tracks).

A quality process as recommended by [ISO2859] is followed, as recommended by [ED-76A/DO-200B].

Annotations requests

According to [ISO2859] a clear separation of responsibilities between the consumer (development team) and

the producer (annotation team) should be enforced. The development team is responsible for preparing the

annotation request artifact, containing the following:

• A list of landing sequences that should be annotated, possibly across multiple fights. These are periods
in recordings when the runway is visible on a landing approach.

• Specifc annotation requirements, describing how annotation should be performed and what the output
format is.

Annotations responses

The annotation team receives the request and performs annotation according to the provided requirements.

Once the annotation process is complete, all produced annotations are packaged into an annotation response

artifact. This artifact represents a lot in a [ISO2859] sense, and is sent back to the development team. In

addition to annotations, annotation response also contains a record of individual annotator actions and

versions of the tools used, for traceability.

https://github.com/openvinotoolkit/cvat

62 Daedalean / FAA VLS Project Report — Chapter 6

Figure 28: Sample view of the annotation tool (CVAT).

Figure 29: Annotation inspection tool.

Inspections

The development team is then responsible for the lot inspection, using an annotation inspection tool

(Figure 29). The purpose of the inspection process is to either accept or reject the lot. The inspection tool

frst performs a set of tests to verify correct annotation format (as required by [ED-76A/DO-200B]), followed

by a manual inspection of a small random sample of the lot.

As emphasized in [ISO2859], during inspection, it is important to maintain the separation of responsibilities

between data producers and data consumers. For example, the person doing the inspection should not request

reworking fawed annotations based on errors found during inspection. The person doing the inspection can

only accept or reject an annotated data lot, but not change the annotation.

Post-processing

After the annotation response has passed inspection, it needs to be processed into a form that can be used for

the neural network training (in particular computing the target functions f from g). This is an automated step
that combines imagery and annotations into datasets, in the format that can be consumed by the training

pipelines.

6.2.5 Synthesized data

Defnition, types, benefts and risks

Machine learning typically requires large amounts of data, especially when tight performance guarantees are

needed. Collecting and annotating this data is not only a costly task but also a particularly diÿcult one, when

all possible operating parameters (Table 3) need to be covered, including edge cases.

Synthesized data helps address this problem since it allows to create new data at lower cost, greater fexibility

and precision than the full collection/annotation process.

63 Daedalean / FAA VLS Project Report — Chapter 6

From [CoDANN20, Section 7.2], synthesized data can be defned as

“any data that was computer-generated or any data from the target sensors that underwent a

processing step that is not included in the target operational system.”

Two main types of synthesized data are usually distinguished (see [CoDANN20, Section 7.2]):

• Augmentations, creating new annotations from existing pairs (x, f (x) + εx). This is usually done by
applying a transformation T : X → X on x such that f (T (x)) can be computed.
A simple example is any image transformation such that f (T (x)) = f (x), e.g. small brightness or
contrast changes when f is the runway detection or extraction function.

• Fully or mostly synthetic data, where datapoints (x, f (x)) are generated without using collected and/or
annotated data. For example, 3D scenes are created using data collected from the real world (e.g. aerial

imagery and height models), from which arbitrary data can be generated with a photorealistic rendering

engine, along with the exact value of the function(s) of interest f .

The development of the VLS makes use of both augmentations and fully synthetic data, as discussed in the

following sections.

Care must be taken with relying on synthetic data, given that it does not strictly originate from the operating

space X , regardless of how realistic the data appears to a human observer. The possible issues and
mitigations are discussed in [CoDANN20, Section 7.2].

A key requirement is that synthetic data should never be used without proper analysis (in the Dataset

management, Learning process verifcation and Independent data and learning verifcation steps of the

W-shaped process). For example, augmentations are not used on validation and testing sets, and fully

synthetic images are only included in dedicated validation datasets.

Augmentations are discussed in Section 6.3; the next section covers fully synthetic data. The performance of

the model between real and simulated data is mentioned in Section 6.5.1.

Fully synthetic data

In addition to augmentations, fully synthetic data is created using Daedalean’s Imaginator system, allowing:

• Low-cost and scalable data generation.

• Fully controlled distribution of operating parameters.

• Automated generation of annotations.

• Ability to explore edge cases that are diÿcult or impossible to acquire during real fight testing.

Imaginator allows generating on-demand photorealistic 3D imagery programmatically and deterministically,

according to the use cases of the products developed (visual traÿc detection/landing/localization).

Georeferenced 3D scenes are created from real data, either from fight surveys and structure from motion

technology, or by combining available terrain elevation data and orthoimagery.

The system can be queried with a request that consists of a scene name, camera extrinsics/intrinsics, other

traÿc, celestials, weather conditions, etc., and returns:

• A rendered image;

• Additional outputs such as depth map, image semantic segmentation, annotations. . .

The rendered image might be post-processed to match camera specifcations (chromatic aberration,

vignetting, sensor noise) or to bring it closer to real images with advanced techniques such as style transfer.

This is illustrated in Figure 30.

64 Daedalean / FAA VLS Project Report — Chapter 6

(a) Before post-processing (b) After post-processing

Figure 30: Real versus synthetic data, before and after post-processing.

For the VLS project, multiple scenes with runways in various regions are used. A dataset of 30,000 synthetic

images was created with various runways, matching the operating space X defned in the data requirements
(see Section 6.1), including weather conditions, sun position, etc. A few examples are shown in Figure 31.

The output format is the same as the annotated real fight data and contains synthetic images and

annotations. Unlike human annotations and real-world sensors, the annotations are exact quantities without

noise.

Figure 31: Synthetic runway images.

6.2.6 Training and model data management

The data management process also sets up tools for the management of development data beyond datasets,

such as trained models, evaluation results, etc.

These are handled with the same data storage artifacts described in Section 6.2.2, therefore guaranteeing

traceability, integrity and reproducibility.

65 Daedalean / FAA VLS Project Report — Chapter 6

6.3 Learning process management

See also Section 2.3.2 for generic information about this development step.

Performance metrics

During development, the following metrics are tracked in training and evaluation. The metrics can be

computed either on each ensemble member (see Section 5.2.3), or on the whole ensemble:

• Mean Absolute Error (MAE) across all outputs.

• Mean disagreement between ensemble members (5.2) (when relevant).

• Median (50% percentile) errors, calculated separately for each validation set and for each component of
γ̂(x) ∈ � ⊂ R6 .

• Worst case (95% percentile) errors, calculated separately for each validation set and for each
component of γ̂(x) ∈ � ⊂ R6 .

• Fraction of errors within reported standard deviation, calculated separately for each validation set and
output value.

This metric measures the correctness of the output uncertainty. Assuming a normal distribution (see

Sections 5.2.3 and 8.3.1), these should converge to ≈ 68%. Lower numbers indicate that the network
underestimates its errors, while higher numbers mean that it overestimates its errors.

The distribution of the errors is also visualized through boxplots (see Figure 37).

Table 6 provides an example of these metrics computed after 275 training epochs (the training processed 27M

samples at this point).

Table 6: Example of metrics computed after 275 training epochs.

50% Set x [px] y [px] Inclination [◦] Left-right [◦] Bisector [◦] Threshold [px]

Training (real)

Training (sim)

Buochs

0.6

0.5

0.5

1.6

0.5

1.0

0.4

0.3

0.5

0.4

0.1

0.5

0.6

0.5

0.6

1.6

0.8

1.1

Florida X59-10 1.0 1.3 0.4 0.4 0.5 1.8

Brno 0.6 6.2 0.4 0.9 0.4 5.8

Excluded runways 2.9 16.8 0.9 1.7 1.0 17.3

95% Set x [px] y [px] Inclination [◦] Left-right [◦] Bisector [◦] Threshold [px]

Training (real)

Training (sim)

Buochs

6.4

4.3

23.0

16.8

4.8

15.9

1.7

1.3

2.5

1.8

1.0

2.0

2.2

2.5

2.2

18.3

7.1

31.9

Florida X59-10 11.5 6.4 1.3 1.1 2.1 12.9

Brno 5.5 52.8 1.2 1.9 1.9 51.6

Excluded runways 130.2 292.4 3.5 6.6 3.9 312.5

within ˙ Set x [%] y [%] Inclination [%] Left-right [%] Bisector [%] Threshold [%]

Training (real) 88 73 82 78 84 76

66 Daedalean / FAA VLS Project Report — Chapter 6

Training (sim) 84 88 85 87 84 87

Buochs 84 81 69 77 82 80

Florida X59-10 70 54 85 75 88 63

Brno 89 23 93 42 96 28

Excluded runways 49 23 70 22 78 27

Architectures

The architectures considered correspond to instantiations of the generic ones described in Section 5.2.3 (see

Figure 24) and [CoDANN21, Chapter 2], considering the defned requirements (see Section 6.1).

Formally, each architecture is a set of models {f̂� : θ ∈ �} parameterized by a set � of parameters. The
training process aims at fnding one model that has adequate performance metrics, using training data.

Training method

As usual, the models are trained by attempting to minimize (at least locally) a di� erentiable loss function

L : X × � → R on the training data, where L(x, θ) measures the quality of the model f̂� (i.e. the quality of
the approximation of the true function f (x) by f̂�(x)) at x , with lower values denoting a better approximation.
The loss should act as a di� erentiable proxy for the performance metrics (see [CoDANN20, Chapter 5]).

As the models are deep neural networks, the training method of choice is (a variant of) stochastic gradient

descent such as Adam [KB15].

After adequate performance is reached during the Model training process, multiple models are trained

simultaneously at each step by starting with di� erent random initializations (see below regarding

reproducibility), producing the ensembles described in Section 5.2.3. As discussed in Section 8.3.1, these

models have the same performance with respect to generalization, but di� erent failure cases.

Loss functions

From Section 5.2.3, the model predicts for every input x ∈ X the distribution γ | x , in other words
f̂�(x) : � → [0, 1] is a probability distribution. As in [LPB17], a natural choice of loss function is the negative
log likelihood � �

L(x, θ) = − log f�(x)(γ(x) .

Since γ | x is assumed to be N(γ(x), �(x)), viewing the output of the model as a pair � �
ˆ ∈ R6 × R6×6γ̂(x), �(x) ,

 � � � �
L(x, θ) = − log q 1

exp −
1
γ(x) − γ(x)t ˆ γ(x) − γ(x) ˆ �(x)−1(ˆ

(2π)6 det �̂
2

=
1
log det ˆ

1
(ˆ �(x)−1(γ̂(x) − γ(x)) + 3 log 2π. (6.1) �(x) + γ(x) − γ(x))t ˆ

2 2

Note that this does not require the knowledge of the true value of the aleatoric uncertainty �(x), only of γ(x).

The frst term can be seen as penalizing a large uncertainty on the result, while the second term, known as

Mahalanobis distance, penalizes a large distance of the prediction from the true parameters, relative to the

estimated error. Therefore, as desired, this loss acts as a di� erentiable proxy for the metrics enumerated at

the beginning of the section.

As explained in Section 5.2.3, the neural network actually outputs the Cholesky decomposition of �̂(x), which

avoids performing matrix inversions.

Data augmentations

The following augmentations can be applied during training on annotated pairs (x, f (x) + εx):

• Random cropping, enabling di� erent positions of the runway in the same image.

67 Daedalean / FAA VLS Project Report — Chapter 6

Figure 32: Original image and generated training data for the Runway extractor network after cropping and

augmentations.

• Random rotations.

• Random brightness, saturation and contrast changes.

• Horizontal mirroring.

• Homography transformations on the runway: under a pinhole camera model, two images of the same
runway from two points of view are related by a homography. This allows generating images taken from

di� erent viewpoints from a single one (within a small di� erence). This is the same technique as in image

mosaicing.

For all of these, the transformed annotations can indeed be computed explicitly, producing new pairs

(x ′ , f (x ′) + εx ′) without requiring additional manual annotations.

See Figure 32 for an example of augmentations obtained from a single image.

Training setup

The software and hardware environment for training correspond to the one described in [CoDANN21, Section

3.3].

A compute cluster is used, composed of servers, each with multiple GPUs (for training forward and backward

passes), reading the training data from networked storage and local caches on SSDs. This allows fast parallel

and distributed experiments.

The software component implements:

• The data pipeline (reading image and annotations, augmentations, etc.).

• The loss function and metrics.

• The candidate neural networks architectures.

• The training process itself.

• The tooling to analyze the training and evaluate the models throughout.

This is done using the high-level framework Tensorfow [Mar+15] with CUDA [Nic+08] support, running on

the stack described in [CoDANN21, Figure 3.7, Table 3.2].

Data traceability and integrity is guaranteed through the systems and the processes outlined in Section 6.2.

To allow reproducibility, pseudo-random number generators are initialized with fxed and recorded seeds.

The metrics are computed after every epoch (when the training algorithm iterated through |Dtrain| samples).
Each training is typically stopped after 1000 epochs or earlier.

�

68 Daedalean / FAA VLS Project Report — Chapter 6

Even if the training code is not used on the operational safety-critical platform (see Section 2.3.2), the training

environment is covered by a large amount of tests to ensure that the training process is performed correctly.

Requirements on the training environment and ways to fulfll them are discussed in [CoDANN21, 3.6-8].

6.4 Model training

See Section 2.3.3 for generic information about this development step. The Learning process management

step defnes metrics, target values for the metrics, model families/architectures, learning algorithms, loss

functions and data processing options. This step also prepares the infrastructure (hardware and software) to

search for a model f̂ , meeting learning-environment model requirements. These are mainly:

• Ein(f̂ , m, Dval) matches the target values for each metric m.

• The model exhibits behavior compatible with generalization (adequate complexity, gap between training
and validation metrics, training evolution).

As outlined in Section 2.1, the process is iterative: parameters are chosen (according to the Learning process

management specifcations), a model is trained, and then evaluated on the fxed validation set and metrics.

Based on the results, a new model is trained and evaluated, until one or more models meeting the

requirements are found. The metrics and validation sets are fxed so that comparisons are possible.

The Model training process should be thoroughly documented, analyzed and reviewed, including training

artifacts that drive decisions, changes, expectations and (intermediate) results.

6.4.1 Training of the runway detector network

The Model training stages of the Detector and Extractor subsystems of the VLS follow the same high-level

process (see also Section 2.1). In the interest of time, only that of the runway detector is presented in this

section, in a simplifed manner.

The term experiment is used to denote a training and evaluation step of the iterative process. The following

paragraphs present a sequence of experiments leading to an adequate model.

For simplicity, the focus is on the evolution of the loss during training (as data enters the training algorithm),

on the training and validation sets, called training curves here. This provides a reasonable assessment of the

two main requirements listed in Section 6.4, but a complete analysis would include more details to that e ect.

Experiment 1: Baseline model

A common strategy to start the iterative process is to create a simple baseline, upon which further

improvements can be made iteratively. For example, such a baseline can consist of a model architecture that is

expected to be complex enough to ft the data, while being small enough to provide some headroom for more

complex models. The choices on hyperparameters and data processing can be made in a similarly conservative

way.

Figure 33 illustrates the training curves of the frst baseline model. The loss on the training set Dtrain (training

loss) smoothly decays as more data is fed to the training algorithm. On the other hand, the loss on the

validation set Dval (validation loss) increases, with a widening distance to the training loss. This shows

overftting, i.e. poor generalization as the performance on unseen data is signifcantly worse than the training

performance. This may indicate that the chosen model f̂� is likely too complex for the training data: the

model learns to memorize a 1-to-1 mapping from the inputs and labels of Dtrain.

Experiment 2: Addressing the overftting behavior

To improve on the unsatisfactory result of the frst experiment, a straightforward attempt is to decrease the

complexity of the model and to increase the amount of variation in the training data by applying more

augmentations.

69 Daedalean / FAA VLS Project Report — Chapter 6

Figure 33: Evolution of the loss on the training and validation sets for the frst experiment, as a function of

processed batches of data. One batch of data represents a given number of training samples. This displays

overftting.

The resulting training curves are shown in Figure 34: the training and validation loss both decrease, but:

• There is a fairly large gap between the training and validation loss values, still showing suboptimal
generalization.

• The values of the losses on both datasets are higher than in the previous experiment, showing poorer
performance (underftting).

There can be several reasons that may explain why the training algorithm underfts f̂� on Dtrain, for example:

• There is not enough data or the augmentations are too aggressive.

• The model is not complex enough to cover the variation to the data, or becomes biased to certain
elements of it.

• The optimization is stuck in a local minimum.

Figure 34: Resulting training curves of the confguration of the second experiment. The model is no longer

overftting to the training set, but is now showing underftting behavior.

Experiment 3: Addressing underftting behavior

A natural way of avoiding early local minima is to increase the learning rate hyperparameter and/or to

introduce a function that changes the learning rate over time (learning rate scheduling). To address the other

70 Daedalean / FAA VLS Project Report — Chapter 6

aforementioned possible causes for the suboptimal performance of the second experiment, one could consider

removing the additional augmentations added at the beginning of this experiment and/or increasing the

complexity of the network.

The third experiment introduces learning rate scheduling, yielding the training curves shown in Figure 35. The

empirical generalization gap is signifcantly smaller compared to the frst two experiments (Figures 33 and 34).

However, the target metrics are not reached, and the validation loss plateaus and increases.

Figure 35: The resulting experiment from the third confguration set. The model is no longer underftting and

the overall generalization gap is small. However, the target metric is not yet reached. An overftting trend can

be also observed towards the end of the experiment that needs to be addressed.

The interdependency between the model, the data and the confguration of hyperparameters is exactly what

makes the training process iterative; each confguration yields a di� erent result, and each new experiment

aims to improve upon the results of the previous one(s).

Experiment 4: Approaching the fnal model

As more experiments are carried out, it is likely that a subset of the confguration space is identifed where the

model is approaching the requirements.

The fourth experiment adds additional data augmentations and decreases the learning rate, producing the

curves in Figure 36. There is very little di� erence between the training and validation losses, the loss smoothly

decays, and the target loss metrics are reached.

Figure 36: The resulting experiment from the confguration described for the fourth experiment. The

“sawtooth”-like trends in both curves are the result of applying the warm restarts learning rate scheduling

method from [LH17].

71 Daedalean / FAA VLS Project Report — Chapter 6

Variants of this confguration are explored, and while similar results can be obtained, none improve on the

requirements. The Model training step concludes with this model.

6.5 Learning process verifcation

See Section 2.3.4 for generic information about this development step.

6.5.1 Comparison of metrics

The performance of the neural network on training and validation sets is analyzed, to verify that there are no

unexpected biases and to evaluate generalization.

In an actual certifcation process, this step would analyze the performance on a carefully designed test set,

following [CoDANN20, Section 6.2 and 6.4]. However, for the reasons explained under Section 6.2 of this

report, no such dataset was collected in the scope of this project.

To still demonstrate the analyses associated to the Learning process verifcation step, the remainder of this

paragraph treats the validation set as the test set2 . Doing so will provide a reasonable estimate of the

performance on new data (such as the fight test from Section 4).

Figure 37 shows the distribution of errors on training and validation sets, and the following observations can

be made:

• On the training set the errors have no noticeable bias and are concentrated around zero median.

• On the randomly sampled validation set the errors demonstrate slight bias in the vertical component of
the vanishing point (Vy) and threshold estimates. This is due to the fact that during data collection, the

plane usually approaches the runway with zero roll, so most validation samples have zero roll. During

training, roll is randomized through augmentations, so with zero roll, a slight systematic error in vertical

coordinate of the vanishing point is to be expected.

• On a Buochs airfeld validation set, slightly larger systematic errors are observed, which are to be
expected due to the specifc approach pattern on that airfeld.

• On a synthetic validation set, the errors have no noticeable bias and are concentrated around zero
median.

• On an unseen runway validation set, the errors have a larger variance, and median values are o� set. This
indicates that the model memorized some aspects of the runways in the training set. More data needs

to be collected on various runways, model architecture simplifed or more aggressive augmentations are

needed to remove this bias.

The closeness of the error metrics between training and validation sets show good generalization on runways

that have been seen during training (but unseen datapoints). Further development is needed to improve

performance on unseen runways.

6.5.2 Analysis of elevated errors/worst cases

A worst case performance analysis is done to verify that there are no systematic errors and that the inputs

with elevated error rates are understood and foreseen.

The inputs from the training and validation sets where the mean absolute error of the Runway extractor

network is the greatest are extracted. The following categories can be distinguished (see Figure 38):

2This does not necessarily have to be either/or: When the Learning process verifcation step is applied to the fnal model (i.e.

after the design phase), it should at least contain the test set according [CoDANN20, Section 6.2 and 6.4], but may also use a

validation set in addition for further analysis.

72 Daedalean / FAA VLS Project Report — Chapter 6

(a) Training set (b) Randomly sampled validation set (c) Buochs airfeld validation set

(d) Synthetic validation set (e) Unseen runway validation set

Figure 37: Neural network output errors distribution for each output value, as boxplots (orange lines denote

medians, and the boxes span from the 25th to the 75th percentile). The fact that errors are elevated for

the left-right angle (lra) on unseen runways should be analyzed further, as the pose is fairly sensitive to that

parameter (see Section 8.5.1).

73 Daedalean / FAA VLS Project Report — Chapter 6

(a) Very large distance (b) Annotation error (c) Very close distance

Figure 38: Dataset samples with the largest prediction error. Labels are in green and blue. Neural network

output is yellow and magenta.

• Very large distance results in the runway being very small and blurry in the image. Also, at large
distances right and left sidelines are nearly parallel, and a minor error in estimating angle between them

may result in large error for the vanishing point coordinates and subsequent pose calculation. This is an

expected limitation of the system at large distances.

• Annotation errors may result in very large training error even for correct neural network outputs.
Annotation errors are minimized through a set of processes described in Section 6.2.4, but cannot be

eliminated completely. In this case, the neural network actually made the correct prediction even in the

presence of annotation error, i.e. the error is not systematic and the network did not learn incorrect

behavior.

• Very close distance may result in a wrong prediction very close to the runway, outside of the limits
defned in Section 3.2. The image changes signifcantly frame-to-frame in this phase of the landing, and

the network may have seen insuÿcient samples representative of that last second before crossing the

runway threshold. If needed, this imbalance may be addressed by selecting such samples more often

during the training process.

The worst cases analysis demonstrates that the worst errors are understood and no unexpected bias is

observed.

6.5.3 Image saliency analysis

Objectives

By defnition of supervised learning (see Section 2.1.1), the model is trained from data to approximate the

function

γ : X → �

that associates to a runway crop the 6 runway image parameters from Section 5.2.1.

While one might expect that the model uses only information from the runway in the crop, there is nothing

that strictly enforces this in the model design or training. Indeed, the model might gain to have additional

contextual information:

• Precision Approach Path Indicator (PAPI) lights, next to the runway.

• The vanishing point is the same for all lines parallel to the runway sidelines.

74 Daedalean / FAA VLS Project Report — Chapter 6

Figure 39: Runway crop with a square blurred (left), to compute sensitivity. Right: zoom-in of the unblurred

and blurred square.

• The horizon line, when present, often spans the whole crop.

In that sense, as part of learning process verifcation, it is insightful to analyze what information on the image

crops the neural network uses for its estimation of γ. Doing so, for example, might uncover:

• Undesired behaviors or biases, e.g. if the network uses the information from adjacent runways or from
unrelated objects.

• A misidentifcation of the operating space, e.g. if the model is meant to work on generic types of
runways but strongly uses specifc markings or objects unrelated to the runway/airfeld.

This analysis also helps to assess aspects of generalization tied to the operating space, that are harder to

assess in purely quantitative analyses that assume an already correctly determined operating space.

Two simple methods are explored in this section (see [CoDANN21, Section 4.6] for a survey of other

techniques).

Technique 1: Visualizing saliency of regions inside the image

A straightforward approach to assess the importance (saliency) of a specifc region in an image is to erase it

from the input crop before feeding it into the network. The region can then be considered

important/unimportant depending on how the error on the prediction changes as a result of the perturbation

compared to unperturbed input. Repeating this for all regions in the input crop reveals the relative importance.

More precisely, given a 128 × 128 pixels input runway crop x ∈ X , a square of 8 × 8 pixels is moved over the
image, blurring the content underneath, producing for each position u ∈ [8, 119]2 a perturbed image xu (see
Figure 39). Applying the neural network produces γ̂(xu), which is converted to the aircraft pose with respect

to the runway. The di� erence

Dx (u) = A(γ̂(x)) − A(γ̂(xu)) ∈ SE(3)

measures the change in the predicted pose between the original and perturbed images. Extracting common

pose parameters (see for example Section 8.2.1) from Dx (u) and displaying each as a heatmap over the

original image shows the infuence of the image regions on the neural network output. The expectation is that

the model uses minimal information around the u outside of the runway, i.e. Dx (u) is relatively small.

This is illustrated in Figures 41, 43 and 45 for three runways (Brno (CZ), Buochs (CH), Florida (USA)). It

can be seen that the model is indeed most sensitive to perturbations on the runway (in particular on corners

and lines) and to the horizon, but not to other areas of the image.

Technique 2: Visualizing saliency over time by constraining the perturbations

Instead of using small squares, semantic parts of the image depending on the runway can be blurred, and the

errors of the resulting neural network predictions can be compared with those of the original input. This will

75 Daedalean / FAA VLS Project Report — Chapter 6

(a) Original: minimum

pred. error

(b) Full blur: maximum

pred. error

(c) Background blur: low

pred. error

(d) Runway blur: high

pred. error

Figure 40: Di� erent targeted blurrings of a runway to assess the information used by the network to estimate

the runway geometry.

indicate whether the network mostly uses information from the runway and its direct surroundings. The

following perturbations are considered:

• Blurring the full image, as a sanity check and baseline: this should signifcantly increase the errors.

• Blurring the runway: if the model uses only the runway, this should increase the errors commensurately
with blurring the full image.

• Blurring the image except the runway: if the model uses only the runway, this should not increase the
errors, except for the fact that the input is not strictly in-distribution anymore (see below).

• Variants of the last one, where the runway mask is extended by 50 pixels to include more contextual
information. This may yield a smaller error increase.

Examples of the perturbations, as well as the expectations on the associated errors are shown in Figure 40.

The beneft of this method is that it is more easily visualized over time compared to the previous one, where

importance can only be assessed on a per-input image basis. The results are illustrated in Figures 42, 44

and 46 over approaches in the same runways, analyzing the errors in glideslope, lateral deviation, distance and

altitude o� sets.

The reason for blurring images instead of masking them by a uniform color (e.g. black) is that the latter

produces an output further away from the input space X , and might also generate elevated errors for that
reason rather than from an information loss. See also Section 5.3 on out-of-distribution inputs.

6.5.4 Additional activities

The out-of-distribution detection component should also be analyzed, which is done in Section 8.4. In

particular, this might help uncover a misidentifcation of the operating space.

In a full process, in addition to expanding on the above activities, further properties of the model would also be

studied, such as robustness (sensitivity to small perturbations).

76 Daedalean / FAA VLS Project Report — Chapter 6

(a) t = 72 (b) t = 50 (c) t = 36 (d) t = 12

Figure 41: Local saliency heatmaps for a single approach from the Brno dataset. The time remaining t towards
the runway threshold is shown from left to right. The four pose parameters, from top to bottom, are the

glideslope deviation error, the lateral deviation error, the distance error, and fnally the altitude error. Red areas

indicate a higher relative importance on the predicted pose compared to the blue areas.

0

1

2

Gl
id

es
lo

pe
 d

ev
. [

de
g] input not blurred input blurred input blurred - background input blurred - runway

0.0

0.5

1.0

La
te

ra
l d

ev
. [

de
g]

0

1

2

Di
st

an
ce

 [N
M

]

84 72 60 48 36 24 12 0
Time remaining to runway threshold [s]

0

500

1000

Al
tit

ud
e

[ft
]

Effect of input blurring on the four pose estimation errors over time

Figure 42: Global saliency for a single approach from the Brno dataset. The expectations with regards to the

four input types depicted in Figure 40 can be confrmed. In almost all cases, the prediction error on input where

the runway is blurred is signifcantly higher than the error on input where the background is blurred. A region

of interest for further examination is the [34, 26] second interval on the glideslope deviation error graph.

77 Daedalean / FAA VLS Project Report — Chapter 6

(a) t = 95 (b) t = 69 (c) t = 41 (d) t = 20

Figure 43: Local saliency heatmaps for a single approach from the Buochs dataset. The time remaining t
towards the runway threshold is shown from left to right. The four pose parameters, from top to bottom, are

the glideslope deviation error, the lateral deviation error, the distance error, and fnally the altitude error. Red

areas indicate a higher relative importance on the predicted pose compared to the blue areas. This particular

heatmap shows that as the runway comes closer, there is less importance on the runway corners (especially for

glideslope, distance and altitude estimates) and more importance towards its surroundings.

0

2

4

Gl
id

es
lo

pe
 d

ev
. [

de
g] input not blurred input blurred input blurred - background input blurred - runway

0.0

0.5

1.0

La
te

ra
l d

ev
. [

de
g]

0

1

2

Di
st

an
ce

 [N
M

]

108 90 75 60 45 30 15 0
Time remaining to runway threshold [s]

0

500

1000

1500

Al
tit

ud
e

[ft
]

Effect of input blurring on the four pose estimation errors over time

Figure 44: Global saliency for a single approach from the Buochs dataset. The expectations with regards to the

four input types depicted in Figure 40 can be confrmed. In almost all cases, the prediction error on input where

the runway is blurred is signifcantly higher than the error on input where the background is blurred. Regions

of interest for further examination are the [53, 43] second interval on the lateral deviation error graph, and the
[90, 75] seconds interval on the glideslope deviation error graph.

78 Daedalean / FAA VLS Project Report — Chapter 6

(a) t = 49 (b) t = 33 (c) t = 25 (d) t = 11

Figure 45: Local saliency heatmaps for a single approach from the Florida X59-10 dataset. The time remaining

t towards the runway threshold is shown from left to right. The four pose parameters, from top to bottom, are
the glideslope deviation error, the lateral deviation error, the distance error, and fnally the altitude error. Red

areas indicate a higher relative importance on the predicted pose compared to the blue areas.

0

1

2

Gl
id

es
lo

pe
 d

ev
. [

de
g] input not blurred input blurred input blurred - background input blurred - runway

0.0

0.5

1.0

La
te

ra
l d

ev
. [

de
g]

0

1

2

Di
st

an
ce

 [N
M

]

58 45 38 30 23 15 8 0
Time remaining to runway threshold [s]

0

500

1000

Al
tit

ud
e

[ft
]

Effect of input blurring on the four pose estimation errors over time

Figure 46: Global saliency for a single approach from the Florida X59-10 dataset. The expectations with regards

to the four input types depicted in Figure 40 can be confrmed. In nearly all cases, the prediction error on input

where the runway is blurred is signifcantly higher than the error on input where the background is blurred. A

region of interest for further examination is the [58, 38] second interval on the glideslope deviation error graph.

79 Daedalean / FAA VLS Project Report — Chapter 6

6.6 Model implementation

See Section 2.3.5 for generic information about this development step.

Hardware

Due to time constraints, the system fight-tested was not running on production hardware meant to

satisfy [ED-80/DO-254], but rather on COTS development hardware, closer to the learning environment. In

particular, a GPU was used for neural network inference, despite the possible certifcation challenges outlined

in [CoDANN21, Section 3.2.2].

Software

Similarly, while having been thoroughly tested, the fight software is not meant to meet [ED-12C/DO-178C],

but rather to provide a fast experimental platform. It is implemented in C++, compiled with the GNU

Compiler Collection (GCC), and runs on a Linux 64 bit platform.

Its main functions are to:

• Provide a software bus for inter-component communication.

• Retrieve and preprocess camera images.

• Coordinate execution of the Runway detector and Runway extractor neural networks on the GPU.

• Execute the detector tracker.

• Execute the pose converter.

• Execute the pose flter and tracker.

• Publish system results, as numerical outputs and development visualization (see Figure 14).

• Record bus messages (system inputs, outputs and inter-component communication) for subsequent
analyses and replay.

Neural network execution

The only non-traditional software component is the execution of the neural networks on the GPU. This is

implemented through Apache TVM [Che+18], an open-source compiler framework for the execution of

machine learning models on various platforms:

• Models from a variety of frameworks (including TensorFlow) can be converted to an intermediary
representation (TVM Relay).

• Optimizations, hardware-agnostic or not, can then be performed to improve execution performance. See
also [CoDANN21, Section 3.5] for an overview of optimizations.

• The model can then be compiled to machine code, with generic (e.g. LLVM) or hardware-specifc
compilers (e.g. NVIDIA’s NVCC).

• A runtime can be accessed from multiple languages to execute the compiled models.

The TensorFlow models obtained in the Model training/Learning process verifcation steps are converted from

TensorFlow’s internal representation to TVM Relay.

Barring concerns about executions guarantees in the learning environment (see [CoDANN21, Section 3.4.1]),

this is a fairly straightforward format conversion step.

To achieve real-time performance on the development platform, the models do not need to be quantized or

pruned, and only basic optimizations (such as tuning) are currently performed (see [CoDANN21, Section

3.5.1]).

80 Daedalean / FAA VLS Project Report — Chapter 6

6.7 Inference model verifcation and integration

See Section 2.3.6 for generic information about this development step.

Inference model evaluation

After integration into the operational hardware and software, the models are evaluated on the development

datasets (training, validation, testing), to ensure that no signifcant di� erences exist with the original models.

As discussed in [CoDANN21, 3.7-8], this actually reduces the need to ensure strict correctness of the learning

software/hardware and the preservation of properties when passing between environments, as generalization

arguments can apply to the inference models.

Execution constraints

Real-time execution requirements are verifed (execution time, memory usage, etc.). This is done by ensuring

that each component only consumes the allocated amount of resources. The analysis is simplifed by the fact

that all components of the system have constant execution time and resource usage. The Runway detector

can detect an arbitrary number of runways, but inference is still performed in constant time by the network

design, and only at most one (selected) runway is passed to the Runway extractor network.

Integration

The integration of the Runway detector and Runway extractor networks with their respective trackers (see

Section 5.5) are analyzed at this step of the process. This is done in Sections 8.5 and 8.6.

Output-level interpretability

As mentioned in Sections 4.2.1 and 5.2.1, the decomposition of the system into the Runway extractor followed

by the Pose extractor has the advantage that the developer or user can be provided with a visualization of the

neural network output (as in the bottom-left of Figure 14) such that, if visually correct, then the system

output (excluding uncertainties) will be suÿciently correct, regardless of the neural network internal aspects.

6.8 Independent data and learning verifcation

See Section 2.3.7 for generic information about this development step.

The development process is reviewed, ensuring that:

• The test data has not been used during development. This is guaranteed because the test data is not
annotated until required and full traceability of which data is used at each step is maintained (see

Section 6.2.2).

• The operating space has been correctly identifed: see Sections 8.2 and 8.4 in Section 8 as well as
Sections 6.5.3 and 6.5.2.

• The di� erences between the learning and inference environments have been mitigated.

6.9 Requirements verifcation

The W-shaped process concludes like a typical system item development: verifcation of requirements. It must

be shown that the item requirements have been fully tested with both normal and robustness test cases.

7 Learning assurance as part of a system

7.1 Allocation of system requirements

Consideration must be given to how the W-shaped assurance process can ft alongside existing methods. The

idea of using multiple standards within a single equipment is not novel, for example [ED-12C/DO-178C]

and [ED-80/DO-254] are often both used in modern avionics systems as guidance for development of software

and complex hardware respectively.

A typical method for achieving this, recommended in [ED-79A/ARP4754A, Section 4.5], is by allocating

requirements at the system level to either software or hardware, some of which defne the software/hardware

interface. The system is then decomposed into a series of items where each item is either software or

hardware and the appropriate guidance followed during the development of that item.

Decomposition with neural networks

A similar approach can be used when introducing a neural network into a system. At the system level there

would be three types of requirements, those allocated to: software, hardware or data.

• The inference engine itself (i.e. the actual hardware or software that executes the neural network; see
Section 2.3.5 and Section 6.6) must have software or hardware requirements which defne the necessary

characteristics and performance of the inference engine, e.g. how many/what confguration of layers it

needs to support, how the model1 and weights are loaded, as well as the required time-performance of

an inference step and output quality. Inference engine requirements are needed to meet certain

performance requirements of the system, such as maximum latency, and if the chosen inference platform

is software this may naturally lead to certain requirements on the underlying hardware platform in order

to meet the required performance.

• The data requirements deal solely with defning the environment in which the neural network should
operate, such as the inputs/outputs and operational conditions, those requirements which drive the

design of the model. As with a software/hardware interface, there is a need for requirements which

defne the interface to the neural network. When the model design is reviewed it is important to consider

the inference engine, i.e. is the model compatible with the target platform?

Unlike with software or hardware requirements it would not be desirable to create an item during system

decomposition which contains only data requirements because that item would not be independently verifable.

An item which contains a neural network would consist of either software or hardware requirements

(depending on the chosen inference platform) and data requirements, the software/hardware requirements

would cover both the inference engine itself and any necessary pre or post processing steps.

Figure 47 illustrates the four possibilities when using this approach:

• Item A is a hardware item that does not include a neural network, with only hardware requirements.

• Item B is a software item that does not include a neural network, with only software requirements.

• Item C is a hardware item that includes a neural network, with hardware and data requirements.

• Item D is a software item that includes a neural network, with software and data requirements.

1“Model” in this context refers to the design of the artifcial neural network that is used in the system and is not related to or

subject to considerations of models as described in [ED-216/DO-331].

81

82 Daedalean / FAA VLS Project Report — Chapter 7

As items A and B do not contain a neural network they are developed following traditional guidance only;

Items C and D do contain a neural network and therefore would be developed with traditional and learning

assurance guidance.

System Requirements

Item A Requirements Item B Requirements Item C Requirements

Traced

Derived

Allocated to:

Hardware

Software

Data

Item D Requirements

Figure 47: Allocation of requirements to items.

Expected activities

In summary, the following activities are expected during system development:

1. In developing the system architecture the implementation choice of a neural network is identifed and

justifed in the design documentation.

2. The software or hardware item within the architecture which will include the neural network is identifed.

3. In developing requirements for the software/hardware item containing a neural network, consideration is

given to the surrounding architecture (e.g. pre- or post-processing, performance/characteristics of the

neural network) as well as the neural network itself (inputs/outputs, operating conditions).

4. Item requirements are clearly identifed as being associated with the surrounding architecture or the data.

V- and W-shaped process requirements

During development of the item containing a neural network two tracks will then be followed: Requirements

allocated to the architecture follow a traditional V-shaped development process, developed and verifed

following guidance of [ED-12C/DO-178C] or [ED-80/DO-254] as appropriate. Data requirements follow the

W-shaped process, requirements are either fulflled by referencing an aspect of the model design2 or by an

input to the data management process to infuence the selection of training, validation and test data.

An example of data requirements can be found in Section 6.1.

2The NN model design encompasses not only the architecture, but also the training/data/validation design.

83 Daedalean / FAA VLS Project Report — Chapter 7

7.2 Plan for Learning Aspects of Certifcation (PLAC)

As with any certifcation project, it is essential to show how compliance with certifcation objectives is

intended to be met. Therefore, a key document for a certifcation project including an AI-based component

will be the Plan for Learning Aspects of Certifcation (PLAC)3; see [CoDANN20, Section 6.7].

Objectives include not just those associated with learning assurance (as identifed in Section 7.3) but also

objectives that apply before or after the learning process.

Examples of relevant objectives can be found in [EAS21] and cover topics such as Trustworthiness,

Explainability, Safety Risk Mitigation as well as Learning Assurance.

Some of these objectives can only be addressed at a system or aircraft level. It must be shown in the PLAC

that these concerns have been considered along with appropriate means of compliance and stage of

development.

7.3 Mapping the W-shaped process to DO-178C objectives

To illustrate parallels with existing guidance, a comparison of learning assurance and [ED-12C/DO-178C]

design assurance objectives is made. Table 7 shows the outcome of this comparison, summarizing

the [ED-12C/DO-178C] objectives (planning process, development process, etc. . .) and for each their

applicability to learning assurance, and if necessary any additional objectives.

3Although the content of the PLAC could also be included within another planning document, such as the PSAC.

8
4

D
a
ed
a
lea
n
 /
 F
A
A
 V
L
S
 P
ro
ject R

ep
o
rt —

 C
h
a
p
ter 7

Table 7: DO-178C and learning assurance objectives

DO-178C Table Objective Summary
Example output from software

development process

Applicability to Learning As-

surance

Additional outputs from Learn-

ing Assurance

A-1:

SOFTWARE

PLANNING

PROCESS

The software planning process

produces the software plans

and standards that direct the

software development processes

and the integral processes.

• Plan for Software Aspects of
Certifcation

• Software Development Plan

• Software Verifcation Plan

• Confguration Management
Plan

• Quality Assurance Plan

• Requirements Standards

• Design Standards

• Coding Standards

The planning process needs to

document how the learning as-

surance certifcation objectives

will be met. Plans and stan-

dards will be required for the

management of data used to

train, evaluate and test the NN,

the guidance of [ED-76A/DO-

200B] could be used as a base-

line for the necessary objectives.

In addition standards that can

be used when selecting and re-

viewing the NN model design

should be established.

• Plan for Learning Aspects
of Certifcation (see Sec-

tion 7.2)

• Data Management Plan and
Standards

• NN Model Standards

• High-level software require- • Dataset requirements

A-2:

SOFTWARE

DEVELOPMENT

PROCESSES

The software development pro-

cess produces the requirements,

design and implementation of

the system following the plans

and standards that have been

previously produced.

ments

• Software architecture

• Low-level software require-
ments

• Source code

• Executables

Additional outputs from the

development process relate to

the data as well as the neural

network design and implementa-

tion.

• Training and Validation
datasets

• NN model and training design
document

• NN weights + graph confg-
uration item (training and

inference platform)

A-3:

VERIFICATION

OF OUTPUTS

OF SOFTWARE

REQUIRE-

MENTS

PROCESS

The frst stage of verifcation is

focused on the high-level soft-

ware requirements, they should

be reviewed with consideration

to system requirements, their

accuracy, the target environ-

ment, conformance to stan-

dards, etc. . .

• Review evidence of high-
level requirements against

requirements standards

• Traceability report showing
high-level software to system

requirements coverage

The high-level requirements as-

signed to the neural network

are verifed through the same

process and produce the same

output as high-level require-

ments that are not assigned to

the neural network.

None

8
5

D
a
ed
a
lea
n
 /
 F
A
A
 V
L
S
 P
ro
ject R

ep
o
rt —

 C
h
a
p
ter 7

Table 7: DO-178C and learning assurance objectives

DO-178C Table Objective Summary
Example output from software

development process

Applicability to Learning As-

surance

Additional outputs from Learn-

ing Assurance

A-4:

VERIFICATION

OF OUTPUTS

Next is verifcation of the out-

put of the software design pro-

cess, namely the low-level re-

quirements and software archi-

• Review evidence of software
architecture against design

standards

• Review evidence of low-level
requirements against require-

Evidence that the model design

has been reviewed, as well as

• Review evidence of NN model
design, considering: standards

and requirements of data,

interface and compatibility

with inference platform

OF SOFTWARE

DESIGN

tecture, with similar considera-

tions to verifcation of high-level
ments standards

the data used to train and eval-

uate it, will need to be provided.

• Review evidence of Training
and Validation datasets

PROCESS requirements (traceability, accu-

racy, etc. . .)

• Traceability report showing
low-level to high-level soft-

ware requirement coverage

• Dataset analysis report show-
ing coverage of data against

requirements

A-5: • Review evidence of source
VERIFICATION Verifcation of the source code, code to coding standards Evidence that the fnal neural
OF OUTPUTS any Parameter Data Item fles

• Static code analysis report network meets the necessary • NN performance analysis
OF SOFTWARE and the integration process, this

CODING & typically includes static analysis • Traceability report showing performance guarantees (e.g. report

INTEGRATION of the source code. source code to low-level robustness, generalization gap).

PROCESSES requirements coverage

A-6: TESTING

OF OUTPUTS

OF

INTEGRATION

PROCESS

Testing of the executable object

code against both high-level

and low-level requirements, with

nominal and robustness test

cases, is performed. Typically

on the target hardware, if not

an equivalent environment must

be used.

• Test cases and procedures
(nominal and robust) for all

high and low-level require-

ments

• Results of executing test
procedures on target (or

equivalent) environment

A third, independent, dataset

is used to verify the behavior

of the NN. First in the training

environment and then on the

target environment, including

the inference engine that will be

used in the certifed system.

• Test dataset

• Results of running test
dataset on NN model in

training environment

• Results of running test
dataset on NN model in

inference environment

A-7:

VERIFICATION

OF

VERIFICATION

PROCESS

RESULTS

Verifcation of the testing must

also be performed. The correct-

ness of the test procedures and

results, traceability to the re-

quirements as well as coverage

of the software is considered.

• Review evidence of test
cases, procedures and results

• Structural coverage report

• Traceability report showing
test to high and low-level

requirements coverage

The test dataset should also be

reviewed and analyzed against

the requirements to ensure cov-

erage of the operational condi-

tions has been achieved.

• Review evidence of test
dataset and results

• Dataset analysis report show-
ing coverage of data against

requirements

8
6

D
a
ed
a
lea
n
 /
 F
A
A
 V
L
S
 P
ro
ject R

ep
o
rt —

 C
h
a
p
ter 7

Table 7: DO-178C and learning assurance objectives

DO-178C Table Objective Summary
Example output from software

development process

Applicability to Learning As-

surance

Additional outputs from Learn-

ing Assurance

A-8:

SOFTWARE

CONFIGURA-

TION

MANAGEMENT

PROCESS

The Confguration Management

process ensures that all artifacts

produced are stored, updated

and archived in a controlled

manner. Evidence must be kept

that the activities defned in the

confguration management plan,

such as baselining, traceability

and change control has been

followed.

• Software Release Notes

• Software Confguration Index

• Software Lifecycle Environ-
ment Confguration Index

Confguration Management pro-

cess applies directly to artifacts

of learning assurance.

None

A-9:

SOFTWARE

QUALITY

ASSURANCE

PROCESS

The Quality Assurance pro-

cess assesses the software life

cycle processes to ensure that

the associated objectives were

fulflled, problem tracking is cor-

rectly handled and certifcation

requirements have been met,

with the required independence

level.

• Checklists
Quality Assurance process ap-

plies directly to learning assur-

ance.

None

A-10:

CERTIFICATION

LIAISON

PROCESS

Finally, there must be a pro-

cess to ensure that a suÿcient

level of communication exists

with the certifcation authorities

during the project lifetime.

• Plan for Software Aspects of
Certifcation

• Software Confguration Index

• Software Accomplishment
Summary

Certifcation Liaison process

applies directly to learning as-

surance.

None

� �

8 Safety assessment

This fnal chapter shows how the W-shaped process, surveyed in Section 2 and applied to the VLS in

Section 6, allows to derive performance guarantees for a system containing machine learning components.

The structure of the chapter follows that of the argument:

• Section 8.1 includes a Functional Hazard Analysis (FHA) of the system as described in Section 3,
including Fault Tree Analysis (FTA) of the minor system failures that were observed during the fight

tests described in Section 4.

• Section 8.2 outlines the analysis of the development datasets used in this project (see Section 6.2), part
of the Dataset management step (Section 2.3.1 and Section 6.2).

• Then, Section 8.3 discusses neural network operational performance.

• The out-of-distribution component, that verifes data assumptions at runtime, is evaluated in
Section 8.4.

• The interaction of the pose component with the neural network is analyzed in Section 8.5.

• The fltering of possibly noisy single-frame poses from the neural network (see Section 5) is then
discussed in Section 8.6.

• While not the main subject of the report, due to time constraints and since it was already studied
in [CoDANN21], the runway tracking is discussed in Section 8.7.

8.1 Functional hazard analysis

This section performs a functional decomposition of the VLS defned in Sections 3 and 5 and allocates the

subfunctions to hardware items in the system design.

This is used to analyze a list of failure conditions in terms of the a ected functions, the e ect of the failure,

and its hazard level classifcation. Finally, we analyze the most hazardous failure conditions further with a fault

tree analysis.

The VLS system and its subsystems, as described in Section 5.1, have the following failure categories:

1. False positives (only relevant before runway selection): the system produces a track that is not a

runway. Because of the matching with a runway database, this can happen only for objects that are

close to an actual runway. This failure may make the runway selection (automatic or manual, depending

on the use case) diÿcult or error-prone;

2. False negatives: the system completely misses the target runway that is in the camera view and within

the ConOps constraints1 . This can result from a false negative output from the neural network but also

a complete undetected loss of function of the system;

3. Track interruptions: a runway is detected, then lost temporarily before tracking resumes again. This

leads to the pose being extrapolated instead of measured, and the guidance halted after a short period;

1To avoid repetition, from here on we omit the fact that this holds, and not only that the runway is in the feld of view.

87

88 Daedalean / FAA VLS Project Report — Chapter 8

4. Runway acquisition delays: a runway is detected but only starts being tracked after too large of a delay

following its appearance in the camera view;

5. Incorrect guidance: the selected runway is tracked, but the provided pose with respect to the runway is

incorrectly reported, i.e.

• the error is larger than what is specifed in the performance requirements, or

• the reported uncertainty does not justify the deviation of the estimate from the real quantity.

System-level requirements specify target values for these failure categories, consisting of:

• Number of false positives per fight hour (during landing phase);

• Probability of not detecting a runway in view for more than t seconds;

• Probability of the runway acquisition delay exceeding t seconds;

• Track coverage ratio, the complement of the ratio of interruptions after a runway is tracked;

• Runway acquisition distance from runway under the expected visibility conditions;

• Precision for the pose (e.g. glide slope and lateral deviation) at di� erent phases of the approach;

• Probability of the system output remaining valid when the guidance error exceeds a certain value.

The reader is referred to Appendix A for examples of some of these failure categories.

8.1.1 System level Functions

This section contains a list of the functions at the VLS system level.

• F1: To detect a runway.
This function is implemented through machine learning based perception (see Section 5.1). At an item

level the following functions contribute to this system level function:

– F1.1: Capture real time imagery data of the external environment of the aircraft.

– F1.2: To pre-process the image.

– F1.3: To detect the runway position in a given image.

This function computes a bounding box for a runway on an image.

– F1.4: To track the runway position in an image.

This function encompasses the tracking algorithm described in Section 5.5.1.

– F1.5: To output a crop of an image with a runway inside.

• F2: To provide guidance to land on a runway.
This function is implemented through machine learning based perception and estimation/fltering

components (see Section 5.2.3, Section 5.4, and Section 5.5.2). It is the main function analyzed in this

report. At an item level the following functions contribute to this system level function:

– F2.1: To pre-process a cropped image assumed to contain a runway.

– F2.2: To compute the runway geometry (parameters in �) from a runway crop.

– F2.3: To compute the pose with respect to the runway.

This implements the A : � → SE(3) pose conversion.

– F2.4: To flter the pose.

This implements the pose Kalman flter.

89 Daedalean / FAA VLS Project Report — Chapter 8

– F2.5: To compute and output the lateral/vertical glidepath deviations to the runway.

This function computes the deviations from the target glideslope angle and the lateral deviation

angle.

• F3: To monitor the system.
At an item level the following functions contribute to this system level function:

– F3.1: To monitor sensors.

This function gathers the outputs of various hardware monitoring components, aimed at detecting

and alerting that a sensor hardware failure has occurred.

– F3.2: To monitor image characteristics.

This function calculates characteristics of the captured image data and reports if they are outside

the acceptable input distribution for the system.

– F3.3: To continuously monitor internal system health.

This function deals with the monitoring aspects related to the external interfaces, protocol

monitoring functions, data integrity monitors, and hardware/software components deemed

necessary to meet the safety objectives.

– F3.4: To test system components at power-up.

This function tests elements of the system at power-up to ensure proper operation and that no

component failures go undetected.

– F3.5: To determine if the system output should be enabled.

This function computes if the system should be outputting information, based on the uncertainty

of its estimates and the position of the aircraft in relation to the runway.

– F3.6: To signal when a landing maneuver should be aborted.

This function evaluates whether a (potentially temporary) loss of function should lead to a landing

abort depending on the last known position.

Failure Condition Analysis

The following pages present a failure condition analysis for Use Case 1 (advisory guidance), refer to Table 8,

and for Use Case 2 (full autonomy), refer to Table 9. It should be noted that Use Case 2 is outside the scope

of this report and is included here only as an example. For sake of simplicity di� erent failure conditions

resulting from failures in di� erent phases of fight are not considered.

�

Table 8: Failure conditions related to use case 1 (advisory guidance provided to the pilot). NOTE: Supporting material and Verifcation methods for each

Failure Condition are not discussed in the scope of this report.

Function Failure condition Phase of E ect of the failure on the FC classi- Rationale for
ID Notes (assumptions)

description title operation aircraft, crew and occupants fcation classifcation

FC1-1-1 F1

Total loss of runway

detection function,

indicated to the

crew.

Descent,

Approach,

Landing

Loss of capability to detect a

runway. The fight crew performs a

visual approach and landing.

MIN

Classifed Minor due

to slight increase in

crew workload.

System is being used in day-

time VMC as defned in

AFM Operating Limitations.

FC1-1-2 F1

Total loss of runway

detection function,

not indicated to the

fight crew.

Descent,

Approach,

Landing

System does not alert to the loss of

function but crew will realize this

when trying to use the system. The

fight crew performs a visual

approach and landing.

MIN

Classifed Minor due

to slight increase in

crew workload.

System is being used in day-

time VMC as defned in

AFM Operating Limitations.

FC1-1-3 F1

Erroneous false

positive runway

detection: system is

detecting something

that is not a runway.

Descent,

Approach,

Landing

The system detects a false positive

and outputs a thumbnail of this

false positive to the crew. The crew

is able to confrm that the

thumbnail does not match the

actual runway. The fight crew

performs a visual approach and

landing.

MIN

Classifed Minor due

to slight increase in

crew workload.

System is being used in day-

time VMC as defned in

AFM Operating Limitations.

FC1-1-4 F1

Erroneous false

negative runway

detection: system

does not detect a

runway it should.

Descent,

Approach,

Landing

The system does not detect a

runway in view and in accordance

with ConOps. The crew has to

attempt the approach again or

ultimately performs a visual

approach and landing.

MIN

Classifed Minor due

to slight increase in

crew workload.

System is being used in day-

time VMC as defned in

AFM Operating Limitations.

FC1-2-1 F2

Total loss of landing

guidance function,

indicated to the

crew.

Descent,

Approach,

Landing

Loss of capability to provide landing

guidance. The fight crew performs

a visual approach and landing.

MIN

Classifed Minor due

to slight increase in

crew workload.

System is being used in day-

time VMC as defned in

AFM Operating Limitations.

�

Table 8: Failure conditions related to use case 1 (advisory guidance provided to the pilot). NOTE: Supporting material and Verifcation methods for each

Failure Condition are not discussed in the scope of this report.

Function Failure condition Phase of E ect of the failure on the FC classi- Rationale for
ID Notes (assumptions)

description title operation aircraft, crew and occupants fcation classifcation

FC1-2-2 F2

Total loss of landing

guidance function,

not indicated to the

fight crew.

Descent,

Approach,

Landing

System does not alert to the loss of

function but crew will easily detect

the loss of guidance. The fight

crew performs a visual approach

and landing.

MIN

Classifed Minor due

to slight increase in

crew workload.

System is being used in day-

time VMC as defned in

AFM Operating Limitations.

FC1-2-3 F2

Erroneous landing

guidance, but

indicated to the

crew.

Descent,

Approach,

Landing

The system provides erroneous

landing guidance which is detected

and alerted to the crew. The fight

crew performs a visual approach

and landing.

MIN

Classifed Minor due

to slight increase in

crew workload.

System is being used in day-

time VMC as defned in

AFM Operating Limitations.

FC1-2-4 F2

Erroneous landing

guidance, but not

indicated to the

crew.

Descent,

Approach,

Landing

The system provides erroneous

landing guidance that seems correct

to the crew. Flight crew will detect

the erratic behaviour by visual

confrmation, correct the approach

path, and revert to alternative

landing methods.

MAJ

Classifed MAJ due

to large reduction of

safety margins and

increase of crew

workload.

System is being used in day-

time VMC as defned in

AFM Operating Limitations.

System monitoring is not working

so there is no indication of

FC1-3-1 F3
Total loss of

monitoring function.

All phases

of fight.

performance or internal failures of

the system. Flight crew is not

aware if there is a problem with the

system, and ultimately will only

realize if there is an issue through

visual confrmation or crosscheck

MAJ

Classifed Major due

to signifcant

reduction of safety

margins.

System is being used in day-

time VMC as defned in

AFM Operating Limitations.

with other aircraft systems.

�

�

Table 8: Failure conditions related to use case 1 (advisory guidance provided to the pilot). NOTE: Supporting material and Verifcation methods for each

Failure Condition are not discussed in the scope of this report.

Function Failure condition Phase of E ect of the failure on the FC classi- Rationale for
ID Notes (assumptions)

description title operation aircraft, crew and occupants fcation classifcation

System monitoring starts

FC1-3-2 F3

Erroneous behaviour

of monitoring

function.

All phases

of fight.

outputting spurious failure messages

and alerts. Flight crew will notice

that the system is misbehaving and

will need to take more e� ort

crosschecking the behaviour of the

system or alternatively revert to an

MIN

Classifed Minor due

to slight reduction of

safety margins and

increase in pilot

workload.

System is being used in day-

time VMC as defned in

AFM Operating Limitations.

alternate system.

Table 9: Failure conditions related to use case 2 (autonomous landing). NOTE: Supporting material and Verifcation methods for each Failure Condition

are not discussed in the scope of this report.

Function Failure condition Phase of E ect of the failure on the FC classi- Rationale for
ID Notes (assumptions)

description title operation aircraft, crew and occupants fcation classifcation

FC2-1-1 F1

Total loss of runway

detection function,

detected by a higher

level system.

Descent,

Approach,

Landing

Loss of capability to detect a

runway. This is alerted and the

higher level system will revert to an

alternate landing procedure.

MIN

Classifed Minor due

to slight increase in

operational risk.

An alternate landing method

exists.

FC2-1-2 F1

Total loss of runway

detection function,

not detected by a

higher level system.

Descent,

Approach,

Landing

System does not alert to the loss of

function but the landing guidance

function will not be able to work.

The higher level system will revert

to an alternate landing procedure.

MIN

Classifed Minor due

to slight increase in

operational risk.

An alternate landing method

exists.

FC2-2-1 F2

Total loss of landing

guidance function on

a full autonomous

system, detected by

a higher level system

Descent,

Approach,

Landing

Loss of capability to provide landing

guidance. The higher level system is

alerted to the failure and can revert

to an alternate landing system or

perform a missed approach

procedure.

MIN

Classifed Minor due

to slight increase in

operational risk.

An alternate landing method

exists.

�

Table 9: Failure conditions related to use case 2 (autonomous landing). NOTE: Supporting material and Verifcation methods for each Failure Condition

are not discussed in the scope of this report.

Function Failure condition Phase of E ect of the failure on the FC classi- Rationale for
ID Notes (assumptions)

description title operation aircraft, crew and occupants fcation classifcation

FC2-2-2 F2

Total loss of landing

guidance function on

a full autonomous

system, not detected

by a higher level

system

Descent,

Approach,

Landing

System does not alert to the loss of

function but autopilot system will

fallback to attitude/altitude holding

modes and not continue with the

approach. This will lead to the

higher level system realization that

there is an issue with the landing

function and revert to an alternate

landing method or perform a missed

approach.

HAZ

Classifed Hazardous

due to large

reduction in safety

margins.

An alternate landing method

exists.

FC2-2-3 F2

Erroneous landing

guidance on a full

autonomous system,

but detected by a

higher level

system/the system

itself

Descent,

Approach,

Landing

The system provides erroneous

landing guidance which is detected

and alerted to a higher level system

which can revert to an alternate

landing method or perform a missed

approach procedure.

MIN

Classifed Minor due

to slight increase in

operational risk.

An alternate landing method

exists.

FC2-2-4 F2

Erroneous landing

guidance on a full

autonomous system,

but not detected by

a higher level

system/the system

itself

Descent,

Approach,

Landing

The system provides erroneous

landing guidance that is not

detected. Unless there is an

independent monitoring system that

crosschecks the correct behaviour

based on other sensor data this

failure case can lead to a Controlled

Flight Into Terrain (CFIT) situation.

CAT

Classifed

Catastrophic due to

potential CFIT and

loss of life.

This failure condition re-

quires the existence of an in-

dependent monitoring/cross-

check function in order to

mitigate the criticality.

�

�

Table 9: Failure conditions related to use case 2 (autonomous landing). NOTE: Supporting material and Verifcation methods for each Failure Condition

are not discussed in the scope of this report.

Function Failure condition Phase of E ect of the failure on the FC classi- Rationale for
ID Notes (assumptions)

description title operation aircraft, crew and occupants fcation classifcation

FC2-3-1 F3
Total loss of

monitoring function.

All phases

of fight.

There is no internal monitoring of

performance or internal failures of

the system. Unless there is an

independent monitoring system that

crosschecks the correct behaviour

based on other sensor data this

failure case can lead to a Controlled

Flight Into Terrain (CFIT) situation.

CAT

Classifed

Catastrophic due to

potential CFIT and

loss of life.

This failure condition re-

quires the existence of an in-

dependent monitoring/cross-

check function in order to

mitigate the criticality.

FC2-3-2 F3

Erroneous behaviour

of monitoring

function.

All phases

of fight.

System monitoring starts

outputting spurious failure

messages and alerts. The higher

level systems will see this as

problem with the system and revert

to an alternate landing method.

MIN

Classifed Minor due

to slight reduction of

safety margins.

An alternate landing method

exists.

• NSE = No Safety E ect, as defned in applicable guidance. • HAZ = Hazardous Failure condition as defned in applicable guidance.

• MIN = Minor Failure condition as defned in applicable guidance.
• CAT = Catastrophic Failure condition as defned in applicable guidance.

• MAJ = Major Failure condition as defned in applicable guidance. For example, an applicable guidance for VTOL is AMC VTOL.2510.

95 Daedalean / FAA VLS Project Report — Chapter 8

FDAL Allocation

The functional DAL allocation can then be made as follows.

Table 10: FDAL allocation.

Use case Function FDAL Related FCs

Advisory (Use case 1)

Full Autonomy (Use case 2)

F1

F2

F3

F1

F2

F3

D

C

C

D

A

A

FC1-1-1

FC1-1-2

FC1-1-3

FC1-1-4

FC1-2-1

FC1-2-2

FC1-2-3

FC1-2-4

FC1-3-1

FC1-3-2

FC2-1-1

FC2-1-1

FC2-1-2

FC2-2-1

FC2-2-2

FC2-2-3

FC2-2-4

FC2-3-1

FC2-3-2

Fault-tree Analysis

During a Fault Tree Analysis (FTA) all of the failure conditions seen in Table 8 and Table 9 would be

analyzed. For simplicity, only two of the failure conditions identifed in Table 8, that manifested during the

fight tests described in Section 4, are analyzed in this report.

During the frst fight, there was a temporary loss of function during two approaches. Additionally, the

monitoring systems capable of detecting the loss of function are not yet implemented, so for this purpose

we’re considering it as not being indicated. This corresponds to FC1-2-2, whose possible causes are

investigated in the fault tree presented in Figure 48.

96 Daedalean / FAA VLS Project Report — Chapter 8

FC1-2-2
Loss of landing
guidance function,
not indicated

Failure of
light sensor

Loss of indi-
cating function

Loss of landing
guidance function

Failure to
track runway

Failure to pre-
process image

Detector loses Consecutive CNN
track of runway false negatives

Figure 48: FC1-2-2 (Loss of landing guidance function, not indicated) fault tree.

During the second fight, the system provided slightly inaccurate landing guidance due to incorrect data

coming from the runway database. Also, as with the failure described above there was no monitoring system

implemented. The corresponding failure condition is FC1-2-4. The situations that can lead to this condition

are described in a fault tree in Figure 49.

FC1-2-4
Erroneous

landing guidance,
not indicated

Erroneous
landing guidance

Runway track
pose is ex-
trapolated

Detector does
not establish
track on runway

No consec-
utive CNN
true positives

Incorrect derived
quantities
on a track

VLS locks on the
wrong runway

VLS locks on
an object that
is not a runway

Incorrect runway
dimensions
from database

Incorrect runway
selected by crew

Loss of indi-
cating function

Figure 49: FC1-2-4 (Erroneous guidance while landing, not indicated) fault tree.

Although only two failure conditions are considered here, all would be analyzed in a full system development.

8.2 Data coverage

Obtaining guarantees on the performance of machine learning models on unseen data requires that the

datasets used during the design stage are quantitatively representative of the operational distribution, and in

particular that they cover it densely (see discussion in Section 2.1.2 for more details).

As presenting a full analysis of data completeness/representativity would require a signifcant number of

additional technical details and space, the section only illustrates some aspects for the data collected for this

project (see Section 6.2.3), with respect to the operating parameters identifed in Section 3.

�

97 Daedalean / FAA VLS Project Report — Chapter 8

Figure 50: Training and validation data with respect to various positioning parameters. Warmer colors represent

a higher density of observations. White areas contain no data.

Moreover, as expected for the moderate scope of the data collection and annotation, it shows that the data

used is not complete enough.

8.2.1 Coverage of parameters

Pose parameters

Figure 50 shows the distribution of training and validation data for the pairs of pose parameters

(lateral deviation angle, glide slope) and (azimuth, distance to runway).

One can see that:

• Most of the datapoints are clustered around small lateral deviation and azimuth angles, and also around
the most common glideslope angles (3.5 to 4.5 degree approaches). This is positive since the operating

space should be covered with a similar distribution as what the system will observe during operations

(Section 2.1.2).

• There are some areas with few observations, notably approaches that have simultaneously a high
glideslope angle and a high lateral deviation, and also approaches with a high azimuth angle while being

very close to the runway. These two situations are potentially dangerous to fy in, hence the lack of

datapoints.

To increase coverage in these areas of the operating space one must rely on augmentations applied to

existing datapoints, as discussed in Section 6.3, or on fully synthetic data, as shown in Section 6.2.5.

The e ect of both augmentations and simulation (increase in data), and the mitigation of the risks introduced

(domain gap), are not included in the analysis developed in this section.

Environmental parameters

Figure 51 shows the distribution of training and validation data for the pairs of environmental parameters

(sun elevation angle, sun azimuth) and (weather, season).

(see also Figure 25). Data has been collected at all sun azimuth angles, but there are some observable

coverage gaps when the sun elevation angle is larger than 70◦ . Such high sun elevation angles are only possible

�

98 Daedalean / FAA VLS Project Report — Chapter 8

Figure 51: Training and validation data with respect to various environmental parameters. On the left plot

warmer colors represent a higher density of observations. White areas contain no data.

in certain areas of the Earth and when they occur they happen for a very limited amount of time, hence it is

extremely diÿcult to gather data in that part of the operating space. Furthermore, the e ect of the sun on

the camera is practically the same at 90◦ elevation or at 70◦ , so this is not of signifcant concern. Figure 51

does suggest however that more training data should be collected under less favorable weather conditions.

Locations

Finally, Figure 52 shows the distribution of training and validation data for the location parameters

(runway width, runway length) and background type

(see also Figure 26). Data has been collected on a wide range of runways with di� erent dimensions. The gap

on the top left of Figure 52 is expected because there are very few runways that are both very long and very

narrow at the same time. However, the gap for runways wider than 50 meters must be flled in the future. In

terms of backgrounds, new data must be collected with desertic backgrounds.

8.2.2 Coverage ratio

A simple coverage ratio can be computed to assess the coverage of the operating parameters by the data.

Consider operating parameters (see [CoDANN20, Section 6.2.7])

X ←֓OP = C1 × C2 × · · · × Cm ×D1 ×D2 × · · · × Dp

defned by m bounded continuous Ci and p discrete parameters Dj , e.g. corresponding to the parameters
identifed in Section 3. For n ≥ 1, the continuous parameters can be divided into n equal intervals, dividing the
operating space into

pY
m n |Di |
i=1

hyper-rectangles. The coverage ratio of a dataset D is then the proportion of hyper-rectangles that contain
points from D.

Figure 53 evaluates the coverage ratio of the combined training+validation set with respect to the position

parameters for 1 ≤ n ≤ 10. As expected, as n increases, there are more hyper-rectangles and it becomes more
and more diÿcult to have full coverage.

99 Daedalean / FAA VLS Project Report — Chapter 8

Figure 52: Training and validation data with respect to various location parameters. The histogram on the right

counts the number of frames where the background can be described with such qualities. Note that a frame

can have more than one background, e.g. plain and water are typical around Florida airfelds.

At n = 10, there are 1000 hyper-rectangles, and approximately 700 of them contain datapoints (70%). As
above, the hyper-rectangles that do not have datapoints correspond to dangerous fight situations where it is

challenging to gather data.

8.2.3 Distribution

Following Section 2.1.2 and as recalled above, the development data should not only cover the operating

space, but also match its distribution, as briefy mentioned in Section 8.2.1. In the terminology of [EAS21],

this is representativity, a stronger requirement than completeness.

In a production-level analysis, an estimation of this distribution should be performed, before checking that the

data matches it. Classical statistical techniques can be used (see the discussion in [CoDANN21, Section 5.1]).

8.2.4 Beyond explicit parameters

The examples above looked at explicit operating parameters, derived from the ConOps and requirements. As

explained in Section 2.3.1, more advanced techniques might be required to capture complex parameters not

easily described, such as the set of possible environments around the runway. These approaches might be

based on additional data, without requiring costly annotations. See also [CoDANN21, Section 5.1].

The system’s ability to generalize towards data that is diÿcult to defne in explicit parameters can be analyzed

by so-called “explainability” techniques as reviewed in [CoDANN21, Chapter 4]. For example, the goal of the

saliency methods demonstrated in Section 6.5.3 is to expose which features of the input the model uses to

make its predictions. In the case of estimating positions and attitudes on runways, the techniques can indicate

to which extent it relies on the runway and artifacts around it.

An important note to these techniques is that they do not provide certainty on the model’s ability to

generalize beyond the training/validation set. They can only provide evidence that the right features from the

input space are used to make predictions. See Section 6.5.3 for a more detailed explanation.

100 Daedalean / FAA VLS Project Report — Chapter 8

Figure 53: Coverage ratio for the training+validation data with respect to the position operating parameters,

for an increasing number n of discretization intervals. Since n = 1 divides the operating space in just one
hyper-rectangle, full coverage (ratio 1.0) is expected.

8.3 Neural network performance

Only the Runway extractor neural network (Section 5.2) is discussed in this section, as the argument for the

Runway detector would be similar.

In the notations of Section 5.2.1, this machine learning model (an ensemble M) approximates the
“image-to-runway parameters” function γ : X → � by outputting for every x ∈ X the frst two moments

� �
d ∈ � × R6×6γ̂(x), Var(γ | x)

of the distribution of γ | x, M modeling the aleatoric and epistemic uncertainty (see Equation (5.1)).

8.3.1 Uncertainties and errors distributions

As explained in [CoDANN21, Chapter 5], obtaining a precise understanding of neural network errors is an

important input to their integration with subsequent fltering/tracking systems (typically traditional software)

and their safety analysis.

Aleatoric uncertainty

By Section 5.2.2, the aleatoric uncertainty (independent of the model, see Section 5.2.2) is estimated by the

model itself. More precisely, each network M ∈M in the ensemble predicts a distribution γ | x,M. Assuming
dthat this is Gaussian (see below), this reduces to predicting (γ̂M (x), VarM (γ | x)) ∈ � × R6×6 .

The loss function (Equation (6.1)) maximizes a log-likelihood which, as the number of training samples tends

to infnity, is equivalent to minimizing the Kullback–Leibler divergence (distance between distributions)

between the true and the predicted distribution.

The normalized model errors

de(γ | x, γ̂M) = VarM (γ | x)−1/2 (γ | x − γ̂M (x)) ⊂ R6

the Mahalanobis (squared) distances2 (appearing in the loss function, (6.1))

dM (γ | x, γ̂) = (γ | x − ˆ VarM (γ | x)−1/2 (γ | x − ˆγM (x))
t d γM (x)) ⊂ R

2The Mahalanobis distance can be seen as a generalized way to measure the number of standard deviation that an observation

is from the mean.

101 Daedalean / FAA VLS Project Report — Chapter 8

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

0.00

0.05

0.10

0.15

0.20

0.25

Figure 54: Mixture (solid red line) of Gaussians (dashed lines).

should then respectively approximately follow a standard normal distribution N(0, I) and a chi-squared

distribution χ2 with 6 degrees of freedom. 6

For example, an incorrect estimation γ̂M of the mean would add a bias to the normal distribution, while a

multiplicative o� set in the uncertainty estimation would inversely multiply the variance.

Epistemic uncertainty

Individual models in the ensemble only predict the aleatoric uncertainty γ | x , excluding their own (epistemic)
uncertainty.

By Section 5.2.2, the epistemic uncertainty is estimated through the ensemble M of models, assuming that
the ensemble members have dissimilar error modes. The models are combined as a mixture with equal weights,

providing an estimation for the distribution γ | x, M, taking into account aleatoric and epistemic uncertainty.
Using the same architecture with di� erent weight initializations was indeed shown in [LPB17] to lead to

di� erent model weights and failure modes despite similar accuracies and loss values. In a complete assessment,

the di� erences in failure modes of each ensemble member should be carefully studied and justifed.

As in [LPB17], it is convenient to approximate the mixture of Gaussians by another Gaussian. This is

reasonable if the means and variances of the ensemble members are fairly close, see Figure 54.

Again, assuming that the above assumptions hold and that the models are precise enough, the normalized

errors and Mahalanobis (squared) distances

e(γ | x, γ̂) ⊂ R6 , d(γ | x, γ̂) ⊂ R

should approximately follow respectively a N(0, I) and a χ2 distribution. The ft should likely be more precise 6

than for the distributions above, which did not take model uncertainty into account nor benefted from the

accuracy increase due to ensembling.

Empirical verifcation

Figure 55 shows components of e(γ | x, γ̂) and e(γM | x, γ̂) over a set of observations (x, γ(x)) ∈ X × � in
the training and validation sets. As the theoretical distribution does not depend on x , these should all follow

standard normal distributions. One can observe that:

• All distributions (training/validation, single model/ensemble) are approximately standard normal.

• The distributions for the ensemble have smaller variance than for the single models. This corresponds
(inversely) to the ensembles predicting higher variance due to the additional epistemic uncertainty.

102 Daedalean / FAA VLS Project Report — Chapter 8

• The empirical distributions that have smaller variance than 1 (reference distribution) indicate that the
uncertainties are overestimated (model not confdent enough).

• As expected, the results are slightly worse on the validation sets. The bias (nonzero mean) originates
mostly from the unseen runways (no approaches contained in the training data) in the validation set, as

discussed in Section 6.5.1.

Figure 56 contains quantile-quantile plots of the same distributions. If the observations are normal distributed

with zero mean, the plot consists of a line, if the variance is one, the line is y = x . The same observations can
be made, noting that there are deviations from normality mostly in the extreme quantiles.

Finally, Figure 57 similarly shows the empirical density of the Mahalanobis (squared) distances d(γ | x, γ̂),
d(γ | x, γ̂M) on the training and validation sets, against the expected χ26 distribution. Again, one notes that:

• On the training set, the distributions are shifted to the left compared to the reference χ26, indicating
that uncertainties are overestimated. On the validation set, the distributions shift again to the right

because of the generalization gap, and the distribution for a single model provides a good ft.

• The left shift is signifcant for the ensemble, showing that the epistemic uncertainty is overestimated.

Possible mitigation for the overestimated epistemic uncertainty would be to:

• Increase the number of models in the ensemble.

• Calibrate the uncertainties a posteriori, if only a shift is present.

• Investigate further why ensemble models have high variance. By using an ensemble of similar models
(same architecture and training), one would rather have expected to observe low variance and

underestimated uncertainty. This might be showing some instabilities in the models.

In a full assessment, quantitative methods should also be used.

103 Daedalean / FAA VLS Project Report — Chapter 8

−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
en
si
ty

Vanishing point: x

−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

0.5

D
en
si
ty

Vanishing point: y

−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
en
si
ty

Inclination

−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

0.5

D
en
si
ty

Left-right

−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
en
si
ty

Bisector

−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

0.5

D
en
si
ty

Threshold
single model

ensemble

N (0, 1)

(a) Training set

−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
en
si
ty

Vanishing point: x

−4 −2 0 2 4 6

0.0

0.1

0.2

0.3

0.4

D
en
si
ty

Vanishing point: y

−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
en
si
ty

Inclination

−6 −4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

0.5

D
en
si
ty

Left-right

−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
en
si
ty

Bisector

−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

D
en
si
ty

Threshold
single model

ensemble

N (0, 1)

(b) Validation set

Figure 55: Marginal (component-wise) distributions of normalized errors e(γ | x, γ̂), e(γ | x, γ̂) (single member
in blue, resp. ensemble in orange), compared against a normal distribution (red), for the training and validation

sets.

104 Daedalean / FAA VLS Project Report — Chapter 8

(a) Training set, single model

(b) Training set, ensemble prediction

(c) Validation set, single model

(d) Validation set, ensemble prediction

Figure 56: Quantile-quantile plots of marginal normalized errors e(γ | x, γ̂), e(γ | x, γ̂), single member and
resp. ensemble on training and validations sets, against a standard normal distribution.

�

105 Daedalean / FAA VLS Project Report — Chapter 8

0 5 10 15 20 25 30

Squared Mahalanobis distance

0.00

0.05

0.10

0.15

0.20

0.25

D
en
si
ty

single model

ensemble

χ26

0 5 10 15 20 25 30

Squared Mahalanobis distance

0.00

0.05

0.10

0.15

0.20

D
en
si
ty

single model

ensemble

χ26

(a) Training set (b) Validation set

Figure 57: Distributions of the Mahalanobis (squared) distances d(γ | x, γ̂), d(γ | x, γ̂M) (single member in
blue, resp. ensemble in orange) on training and validation sets, against a χ26 distribution.

8.3.2 Generalization bounds

Background

Section 5.3 of [CoDANN20] provided a brief overview of generalization bounds (see Section 2.1.2) for deep

neural networks, to provide probabilistic performance guarantees on unseen data as in Equation (2.4). Two

types of approaches can be identifed: one based based on training/model complexity, and the other one based

on evaluation on validation/testing data:

• Bounds of the second type are model-agnostic (and therefore simple to apply as they rely on few
assumptions), but they require a large amount of data and while they prove generalization, they do not

provide an underlying reason for it.

• Bounds of the frst type use additional information on the data and/or model family and/or trained
model, and do not usually require data beyond the training dataset. Depending on the methods, they

provide various levels of insights about generalization. These are usually the techniques referred to when

mentioning research on generalization in deep learning.

As discussed in [CoDANN20, Section 5], deep neural networks present multiple challenges as they

usually contain more parameters than data (which would indicate a tendency to overft [Zha+17]), yet

consistently present excellent generalization abilities in practice [KKB18]. Applying “classical” results

such as Vapnik–Chervonenkis-type bounds will usually result in vacuous statements, either because they

require too much data or because the generalization gap is higher than the maximum value of the

metrics.

In the recent years, research has produced nontrivial bounds for deep neural networks, often using

post-training observations or transformations on the model such as robustness to weights perturbations

or compressibility [DR17; Zho+19] (see also [NBS18; Aro+18]). The latter allow in particular taking

into account the fact that the “e ective” model family complexity is lower than what other measures

provide and to use properties of the data beyond the mere size. However, they still provide bounds

signifcantly weaker than what can be observed, or demonstrated with bounds of the second type. For

example, Zhou et al. [Zho+19] show error bounds ImageNet [ImageNet] of > 5% accuracy while the
validation accuracy is 65%.

In the current state of knowledge, an adequate strategy therefore seems to:

�� ��
�����

�����

�� ��

106 Daedalean / FAA VLS Project Report — Chapter 8

• Use evaluation-based bounds with a large amount of data to obtain fairly tight performance bounds.

• Assess generalization abilities with recent techniques based model/data complexity. Even though this
will give weaker bounds, this can help assessing possible overftting/overly complex architectures (part of

the Learning process management and Learning Process verifcation phases of the W-shaped process,

see Sections 2.3.2 and 2.3.4). As noted in [CoDANN21, Section 3], compression might be part of the

implementation of the mode on the operational platform (see Model implementation, Section 2.3.5).

Even with powerful bounds based training/model complexity (frst type), both approaches would still make

sense in the W-shaped process, as they are respectively akin to dynamic and static verifcation/validation of

classical software.

Due to time constraints, only the frst step will be illustrated here.

Generalization bounds via evaluation

For 1 ≤ i ≤ 6, let
dei (x, γ) = Var(γ | x)−1/2(γ̂(x) − γ(x))i ∈ R, (x, γ) ∈ X i i

be the normalized errors for each component. Section 8.3.1 provided strong evidence (system design and

empirical verifcation) that ei is a normal random variable N(µi , σ
2) over X × �. i

Then, for any δ ∈ (0, 1) and a test dataset size n ∈ N, the following bound on the generalization gap holds
with probability greater than 1 − δ over all Dtest ∼ X n:

√
2σi erf

−1(1 − δ)|Eout(γ̂, ei) − Ein(γ̂, ei , Dtest)| ≤ √ =: εgen(σi , n, δ).
n

Note that εgen(σ, n, δ) → 0 as n →∞, i.e. the generalization gap disappears as the amount of evaluation data
increases. The parameter δ is the probability of sampling a “bad” dataset for which the guarantees do not
hold; for δ = 10−8 , erf−1(1 − δ) ≈ 4.05.

Note that Eout(γ̂, ei) = µi , hence this provides an estimate for this quantity based on the observed in-sample
mean.

The value of σi is still unknown, but given that εgen is increasing with σi , a conservative assumption σi < 5
can be made: given the analysis in Section 8.3.1 and the system design, it would be very unlikely that the

normalized errors have such a large standard deviation.

The same method can then be used to estimate σi from the evaluation data:

σ2 XniEout(γ̂, ei
2) − Ein(γ̂, ei

2, Dtest) = Eout(γ̂, ei
2) − (ei (x)/σi)

2 ,
n σi

2

x∈Dtest

where the (ei (x)/σ) are independent N(µi /σ, 1) random variables. Therefore, the sum is a noncentered x∼Dtest

χ2 random variables with parameters (k, λ) = (n, n(µi /σ)2), say with cumulative distribution function Fk,�.
Therefore,

� � � � � � � �� � 2 2µi εn µi εn
P Eout(γ̂, ei

2) − Ein(γ̂, ei
2, Dtest) < εgen,2 = Fk,� n 1 + + − Fk,� n 1 + −

σ2 σ2 σ2 σ2 i i

= 1 − δ(σi , n, εgen,2, µi).

Unlike the normal distribution, this is not symmetric around the mean, so that εgen,2(σi , n, δ) is only implicitly
a function of δ; it can be inverted numerically and again satisfying εgen,2 → 0 as n →∞.
Writing

Eout(γ̂, ei)
2 − Eout(γ̂, ei

2) = Ein(γ̂, ei , Dtest)
2 + (Eout(γ̂, ei) − Ein(γ̂, ei , Dtest))

2

+2Ein(γ̂, ei , Dtest) (Eout(γ̂, ei) − Ein(γ̂, ei 2, Dtest))

+Ein(γ̂, ei
2, Dtest) + Eout(γ̂, ei

2) − Ein(γ̂, ei
2, Dtest),

�� ��

�� ��

107 Daedalean / FAA VLS Project Report — Chapter 8

Table 11: In-sample mean and variance of the errors on the validation dataset, and the resulting generalization

guarantees, under the assumptions in the text. The (unitless) quantities µi and σi belong to the respective

intervals in the last two rows.

Vx [px] Vy [px] Inclination [◦] Left-right [◦] Bisector [◦] Threshold [px]

Mean 0.2843 0.0879 0.0729 0.0242 -0.0008 -0.1104

Std. 0.5696 0.7104 0.5824 0.6455 0.5057 0.7306

µi [0.255, 0.313] [0.059, 0.117] [0.044, 0.102] [−0.005, 0.053] [−0.03, 0.028] [−0.139, −0.082]
σi [0.37, 0.739] [0.554, 0.845] [0.375, 0.74] [0.464, 0.789] [0.23, 0.678] [0.581, 0.863]

the generalization bound

� �
σ2 ε2 i − Ein(γ̂, ei , Dtest)

2 − Ein(γ̂, ei
2, Dtest) ≤ gen + 2εgen|Ein(γ̂, ei , Dtest)| + εgen,2

holds with probability greater than 1 − 2δ, where Varin(γ̂, ei , Dtest) := Ein(γ̂, ei , Dtest)2 − Ein(γ̂, e2, Dtest) isi

the in-sample variance.

Therefore, by the union bound,

|µi − Ein(γ̂, ei , Dtest)| ≤ εgen(σi , n, δ),

σ2 ε2 i − Varin(γ̂, ei , Dtest) ≤ gen(σi , n, δ) + 2εgen(σi , n, δ)|Ein(γ̂, ei , Dtest)| + sup εgen,2(σi , n, δ, µ̄ i)
µ̄ i

for all 1 ≤ i ≤ 6 with probability greater than 1 − 12δ, where the supremum is over the µ̄ i satisfying the frst
inequality. The right-hand side values are the generalization gaps, and this provides estimates for µi , σ

2 as ai

function of the in-sample quantities, estimate for σi , confdence δ, and number of datapoints n.

Table 11 displays the means and standard deviations of the errors observed on the validation dataset

(in-sample errors) with the resulting generalization guarantees for δ = 10−7/12, σi < 5, assuming for the sake
of the example (and optimistically) that the same values have been observed on a test dataset of size n = 106 .
See Section 6.2.1 for considerations about the use of the validation set instead of the test set in this project.

As described in Section 6.2.1, the validation dataset contains only data not used for training, a combination of

new approaches to known runways (seen during training on other approaches) and unknown runways,

therefore measuring generalization to arbitrary runways. However, one runway was excluded from the dataset

to create Table 11, as the errors were non-trivially biased, which would have skewed3 the analysis in

Section 8.6. This was already discussed in Figure 37, the most likely reason being a lack of trainig data.

To evaluate the cost of collecting a million datapoints, this corresponds to 46 hours of fight (with a runway in

view) at 6 frames per second (or 9 hours at 30 fps, however yielding less diversity). A team of 20 professionals

annotators would require roughly 6 weeks to annotate this data.

3More precisely, this would have induced a vertical o �set in the glideslope predictions.

108 Daedalean / FAA VLS Project Report — Chapter 8

10−2 10−1 100 101 102

OODscore/q
99
train

0.0

0.2

0.4

0.6

0.8

1.0

1.2

D
en
si
ty

validation set

false detection

Figure 58: Distribution of the OOD classifcation score (Equation (5.2), using the 2-norm) on the validation

and false detection sets, relative to the 99th percentile of the training set score. The vertical line marks the

chosen threshold τood.

8.4 Out-of-distribution detection

8.4.1 Neural networks

The assumption that the input data to the neural networks matches the expected distribution is crucial for any

performance guarantee to apply. Each of the neural networks is coupled with an out-of-distribution

component, presented in Section 5.3, checking this assumption during operations.

These components are evaluated using in-distribution (the training/validation/testing datasets) and

out-of-distribution data, e.g. an out-of-distribution dataset that represents boundary cases such as:

• Imagery from approaches in environments not covered by the system ConOps.

• Imagery with aberrations.

• Image crops from the expected environments but not containing runways.

See also [CoDANN20, Section 6.6.2] for a discussion of the types of out-of-distribution inputs that can arise

during operations.

Runway detector

As in Section 5.3, out-of-distribution detection for the Runway detector is not discussed due to its similarity

with the Runway extractor.

Runway extractor

For the Runway extractor network, after OOD detection has been performed on the runway detection

network, the main type of OOD inputs are false positives from the detector. A set of such inputs that arose

during fight (not taking OOD into account) has been collected.

For the OOD score from Equation (5.2), Figure 58 shows a clear separation between in-distribution inputs and

these out-of-distribution inputs, demonstrating the ability to detect the latter accurately.

The choice of the threshold τood, controlling the trade-o� between false positives (in-distribution inputs

classifed as OOD) and false negatives (OOD inputs failed to be classifed as such), can be facilitated with a

precision-recall curve as in Figure 59. Precision (resp. recall) provides a normalized measure of false positives

(resp. false negatives).

Figure 60 shows examples of in-distribution inputs wrongly classifed as out-of-distribution. They all consist of

either hard to see, very far away, or very close runways, at the boundary of the operational domain.

109 Daedalean / FAA VLS Project Report — Chapter 8

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec
is
io
n

p0 p1

p2

τOOD/q
99
train recall precision

p0 0.60 0.953 0.991

p1 0.66 0.964 0.986

p2 1.06 0.991 0.876

Figure 59: Precision and recall of the out-of-distribution for various thresholds τood, together with a table of

possible values for the threshold. p1 maximizes the product of precision and recall, and was selected as the

threshold for this model.

Figure 60: Examples of full camera images (before cropping and rescaling) corresponding to false positive

detections on the validation set. All of them are hard to see, very far, or very close runways.

99 99 In the experimental system, the threshold τood = 0.66q is the 99th percentile of the scores train, where qtrain
computed on training data, is chosen as a good trade-o� between robustness to false detections, and runway

detection range.

8.4.2 Kalman flter

The pose-fltering Kalman flter (see Section 8.6 below) maintains an uncertainty estimation that can be used

to detect when the system is in an unhealthy state, with the same technique as above (i.e. if the uncertainty is

higher than some threshold).

The flter maintains a number of invariants (e.g. innovation and its covariance), whose statistics over time can

also serve as verifcations that its assumptions (see Section 8.6.1) hold.

110 Daedalean / FAA VLS Project Report — Chapter 8

8.5 Pose converter

As a reminder on the system design (see Section 5.2.1), the runway image parameters γ̂(x) ∈ � estimated by
the neural network from an image x ∈ X are converted to a 6 degrees-of-freedom pose A(γ̂(x)) ∈ SE(3) ∼= R6
through an explicit formula for the function

A : � → SE(3),

in the Pose converter component.

In the “machine learning model as a sensor” analogy from Section 5.2.2, the estimate γ̂(x) is related to the

true value γ(x) = E(γ | x) by a small (by Section 8.3) but nonzero error ε(x) = γ̂(x) − γ(x) ∈ R6 . It is
therefore important to analyze the infuence of these errors on the pose, namely the di� erence between

the true pose A(γ(x)) and the estimated pose A(γ̂(x)),

as this will indicate how errors from the neural network propagate to the pose, and what are acceptable errors.

The next section shows a self-contained sensitivity analysis, while Section 8.6 will provide an analysis of the

end-to-end system (from neural network estimation to fltered pose estimation), taking into account the

propagation of errors from � to SE(3) due to the pose conversion.

8.5.1 Sensitivity analysis

General setup

The general sensitivity around a fxed γ ∈ � ⊂ R6 can be quantifed through the Jacobian
� � � �
∂Ai A(γ) − A(γ + εe j) ∈ R6×6Jac A(γ) = (γ) = lim ,
∂γj "→0 ε1≤i ,j≤6 1≤i ,j≤6

measuring the rate of change of each component of the pose A(γ) for small errors in γ ∈ �.

Given that A is not linear, the sensitivity usually depends on γ, namely on the pose of the aircraft.

The interpretation is made easier by:

• Looking at aircraft poses instead of runway camera parameters:

S(x) = (Jac A)(A−1(x)) ∈ R6×6

quantifes the sensitivity of the pose at a point x ∈ SE(3) with respect to the image parameters.

• Replacing A : � → SE(3) by the a composition B ◦ A, where B : SE(3) → R computes e.g. the distance,
altitude, glide slope or lateral deviation. Then

∇(B ◦ A)(A−1(x)) ∈ R6 (8.1)

represents the sensitivity of the corresponding quantity with respect to the 6 parameters γ ∈ �
estimated by the neural network.

Analysis

Figures 61, 62, 63 and 64 display the sensitivity (8.1) for the distance, altitude, glide slope and lateral

deviation respectively, on a set of poses representative of the operational volume (see Section 3).

More precisely, the poses are chosen with a glide slope between 2.5◦ and 8◦ , a lateral angle between -5◦ and 5◦ ,

a distance between 500 m and 3 km, and a minimum altitude of 60 m. The aircraft is always oriented parallel

to the runway. A runway width of 30 m is assumed; the sensitivities of the positional quantities scale linearly.

For each subplot (a)–(f), corresponding to the 6 parameters from � ⊂ R6 (vanishing point, inclination angle,
bisector angle, left-right angle, threshold):

111 Daedalean / FAA VLS Project Report — Chapter 8

• The 3-dimensional plot shows through color (warmer is higher) the sensitivity of the quantity with
respect to the given parameter, across aircraft poses, with the runway located at (0, 0, 0) (bottom left).
To allow comparison between the parameters, the sensitivities are clamped at 1◦ for angles and at 200

meters for positions.

• The three 2-dimensional plots display the position parameters (horizontal axis; distance, lateral and
altitude) against the sensitivities (vertical axis), where darker colors represent higher point densities.

The following observations can be made:

• Distance, altitude, glide slope and lateral deviations are robust to all 6 parameters for all positions
except:

– Distance with respect to the left-right angle at medium distances and large lateral deviations (see

Figure 61 (e)).

– Distance with respect to the bisector angle at low altitudes and medium distances (see Figure 61

(d)).

– Altitude with respect to the left-right angle at large distances and large altitudes (see Figure 62

(e)).

– Lateral deviation with respect to the left-right angle at large lateral deviations (see Figure 64 (e)).

• When fying aligned with the runway at distances smaller then 1 km, the distance, altitude and glide
slope are very robust to errors in the 6 parameters predicted by the neural network.

(a) Vanishing point x (b) Vanishing point y (c) Inclination

(d) Bisector (e) Left-right (f) Threshold

Figure 61: Sensitivity of distance (meters) with respect to the runway image parameters γ.

112 Daedalean / FAA VLS Project Report — Chapter 8

(a) Vanishing point x (b) Vanishing point y (c) Inclination

(d) Bisector (e) Left-right

Figure 62: Sensitivity of altitude (meters) with respect to the runway image parameters γ. There is no

dependency on threshold.

(a) Vanishing point x (b) Vanishing point y (c) Inclination

(d) Bisector (e) Left-right (f) Threshold

Figure 63: Sensitivity of glide slope (degrees) with respect to the runway image parameters γ.

113 Daedalean / FAA VLS Project Report — Chapter 8

(a) Vanishing point x (b) Vanishing point y (c) Inclination

(d) Bisector (e) Left-right (f) Threshold

Figure 64: Sensitivity of lateral deviation (degrees) with respect to the runway image parameters γ.

8.6 Pose fltering

The Runway extractor component produces at each timestep an estimate γ̂(xt) for the runway image

parameters γ(xt) on the current image xt ∈ X . These measurements contain noise due to aleatoric and
epistemic uncertainty, but do not make use of information outside the single images (e.g. no previous

measurements or state). Section 8.3.1 derived worst case bounds for these errors and assumptions about their

distributions.

Errors on the image parameters propagate to the pose, as analyzed in Section 8.5, with some output

parameters being quite sensitive to errors in some of the components.

Pose flter

As described in Section 5.5.2, the Pose flter uses an (extended) Kalman flter to smooth out the outputs of

the Runway extractor / Pose converter pair, taking into account a movement model for the aircraft as well as

the uncertainties predicted by the neural network (propagated to pose uncertainty). In other words, at each

time step, the output of the neural network is combined with the state predicted by the movement model,

weighted with uncertainties from the neural network and the movement model. This produces the fnal system

outputs. As the runway parameters-to-pose function A : � → SE(3) is not linear, this is a nonlinear flter. See
Figure 65 for an overview of the input parameters to the Pose flter.

In the system analyzed, other sensor data such as IMU sensor data or data on the pilots control inputs is not

used as an input to the flter so that the system depends on image data only.

This section performs an analysis of the Runway extractor / Pose converter / Pose flter triplet, showing how

generalization guarantees from the neural network propagate to performance bounds on the end system

output.

114 Daedalean / FAA VLS Project Report — Chapter 8

Runway crop Runway extractor Pose converter Pose flter

xt ∈ X γ̂(xt) ∈ � A(γ̂(xt)) ∈ SE(3) p̂t ∈ SE(3)

b b b ∈ R6×6�(γ̂(xt)) ∈ R6×6 �(A(γ̂(xt))) ∈ R6×6 �t

Figure 65: System architecture: from runway crop (after the Runway detector component) to fnal pose output.

Performance analysis

The design of the flter assumes:

• Normal measurement (neural network) noise, with mean zero. This was shown to be a valid assumption
in Section 8.3.1.

• Movement model for the pose with normal noise with mean zero on the pose velocity. This is a
simplifed model that should be accurate enough for the conditions described in the Section 3 and will

not be discussed further as this is standard.

• Mutually independent movement and measurement noises, over and between timestamps.

Section 8.6.1 below examines the third assumption.

Section 8.6.2 then performs Monte Carlo simulations to conclude the performance analysis and obtain

statements about the guaranteed end system performance.

8.6.1 Errors correlation over time and with process noise/initial state

Common formulations of classical flters assume as a simplifying assumption that errors are uncorrelated over

time, and uncorrelated with the process noise and initial state.

Section 5.3.2 of [CoDANN21] provided a brief discussion of these assumptions with respect to aleatoric and

epistemic uncertainty. In short, the fact that subsequent images are very similar might imply both that the

errors are:

• Correlated because they come from an inherent diÿculty in the current conditions (environment, aircraft
pose. . .).

• Uncorrelated because they come from local failures/discontinuities of the model that do not persist over
highly correlated frames.

For the Runway extractor network of the VLS, Figure 66 shows an example of the regression error time

dependency on an approach in the training or validation set.

The autocorrelation at time t of a time series T of length N is estimated by

N−tXĉ(t) 1
ρ̂(T , t) = , where ĉ(t) = (T (n) − T̄) (T (n + t) − T̄) (8.2)

ĉ(0) (N − t)
n=0

¯

pass between two samples for them to be considered uncorrelated [Sok97]. It is estimated by

and T is the sample mean. The integrated autocorrelation time provides a measure of the time that needs to

MX
τ̂int(T ,M) = 1 + 2 ρ̂(T , t)

t=1

where M ≪ N is a cuto� designed to remove the noisy estimates at large time separation t, typically chosen
as the smallest value such that M ≥ 5τ(M).

115 Daedalean / FAA VLS Project Report — Chapter 8

0 10 20 30 40 50 60 70

time [s]

−10

−5

0

5

er
ro
r
[p
x]

Vanishing point x

0 10 20 30 40 50 60 70

time [s]

−40

−20

0

20

40

er
ro
r
[p
x]

Vanishing point y

0 10 20 30 40 50 60 70

time [s]

−3

−2

−1

0

1

2

er
ro
r
[d
eg
]

Inclination

0 10 20 30 40 50 60 70

time [s]

−4

−2

0

2

4

6

er
ro
r
[d
eg
]

Left-right

0 10 20 30 40 50 60 70

time [s]

−3

−2

−1

0

1

2

3

er
ro
r
[d
eg
]

Bisector

0 10 20 30 40 50 60 70

time [s]

−40

−20

0

20

40

er
ro
r
[p
x]

Threshold

measured error

predicted σ

(a) Runway in training set

20 40 60 80 100

time [s]

−6

−4

−2

0

2

4

6

er
ro
r
[p
x]

Vanishing point x

20 40 60 80 100

time [s]

−10

−5

0

5

10

er
ro
r
[p
x]

Vanishing point y

20 40 60 80 100

time [s]

−1

0

1

2

er
ro
r
[d
eg
]

Inclination

20 40 60 80 100

time [s]

−30

−20

−10

0

10

20

30

er
ro
r
[d
eg
]

Left-right

20 40 60 80 100

time [s]

−15

−10

−5

0

5

10

15

er
ro
r
[d
eg
]

Bisector

20 40 60 80 100

time [s]

−10

−5

0

5

10

er
ro
r
[p
x]

Threshold

measured error

predicted σ

(b) Runway in validation set

Figure 66: Example of errors (black line) and predicted standard deviation (blue shade) over time during one

approach in the training set (Valkaria airport) and one in the validation set (Buochs airport).

116 Daedalean / FAA VLS Project Report — Chapter 8

0 10 20 30 40 50 60 70

time [s]

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

co
rr
el
a
ti
o
n

τ̂int = 0.56s

Vanishing point x

0 10 20 30 40 50 60 70

time [s]

0.0

0.2

0.4

0.6

0.8

1.0

co
rr
el
a
ti
o
n

τ̂int = 1.15s

Vanishing point y

0 10 20 30 40 50 60 70

time [s]

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

co
rr
el
a
ti
o
n

τ̂int = 1.56s

Inclination

0 10 20 30 40 50 60 70

time [s]

0.0

0.2

0.4

0.6

0.8

1.0

co
rr
el
a
ti
o
n

τ̂int = 1.26s

Left-right

0 10 20 30 40 50 60 70

time [s]

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

co
rr
el
a
ti
o
n

τ̂int = 1.57s

Bisector

0 10 20 30 40 50 60 70

time [s]

0.0

0.2

0.4

0.6

0.8

1.0

co
rr
el
a
ti
o
n

τ̂int = 1.28s

Threshold

(a) Runway in training set

20 40 60 80 100

time [s]

0.0

0.2

0.4

0.6

0.8

1.0

co
rr
el
a
ti
o
n

τ̂int = 2.43s

Vanishing point x

20 40 60 80 100

time [s]

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

co
rr
el
a
ti
o
n

τ̂int = 1.16s

Vanishing point y

20 40 60 80 100

time [s]

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

co
rr
el
a
ti
o
n

τ̂int = 6.00s

Inclination

20 40 60 80 100

time [s]

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

co
rr
el
a
ti
o
n

τ̂int = 0.60s

Left-right

20 40 60 80 100

time [s]

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

co
rr
el
a
ti
o
n

τ̂int = 2.54s

Bisector

20 40 60 80 100

time [s]

0.0

0.2

0.4

0.6

0.8

1.0

co
rr
el
a
ti
o
n

τ̂int = 2.00s

Threshold

(b) Runway in validation set

Figure 67: Example of autocorrelation and integrated autocorrelation time for errors on the same approaches

as in Figure 66.

117 Daedalean / FAA VLS Project Report — Chapter 8

Table 12: Integrated autocorrelation time of errors computed over the averaged correlations observed in the

approaches that are part of training set.

Variable τint [s]

Vanishing point x 3.09

Vanishing point y 3.52

Inclination 3.36

Left-right 3.00

Bisector 2.72

Figure 67 shows the autocorrelation time and integrated autocorrelation time for the same example

approaches as Figure 66.

Table 12 reports the integrated correlation time computed by averaging the results of Equation (8.2) over all

the approaches in the training set, discarding the simulated images, and multiplying the result by the

framerate to express it in seconds.

A signifcant correlation time can be observed. In a complete analysis, this should be mitigated for example by:

• Investigating the source of error correlation for inputs with low epistemic uncertainty (see
also [CoDANN21, Section 5.3.2]).

• Taking into account errors correlation into the analysis.

• Using flters designed around autocorrelated inputs considered, e.g. [FWZ13], [Sim06, Section 7.2].

8.6.2 Performance analysis

The analysis of the Runway extractor / Pose converter / Pose flter triplet is set up as follows:

• Approaches are sampled according to the Concepts of Operations (Section 3). This corresponds to a
time series pt ∈ SE(3).

• For each approach:

– For each timestep t, the true runway image parameters γt = A
−1(pt) ∈ � are computed. An error

εt ∈ R6 is sampled according to the distribution provided by generalization in Section 8.3.1. This
provides a simulated neural network output γ̂t = γt + εt ∈ �.

– The flter is run with the γ̂t , and the corresponding estimated poses p̂t ∈ SE(3) are compared to
the true poses pt .

This is repeated many times to estimate the distribution of pose errors induced by the distribution of

neural network errors. This process assumes that the errors are uncorrelated between frames, but a

model for the correlation could also be taken into account (see Section 8.6.1).

Crucially, this allows analyzing the system performance without requiring additional data/fight tests, yet

faithfully, thanks to the input of generalization results for the neural networks.

118 Daedalean / FAA VLS Project Report — Chapter 8

Approaches

In this section, two approaches will be used for illustration purposes (see Figure 68), but in a complete analysis

a very large number of random approaches would be used. Given that no image data is required anymore at

this stage, this involves almost no cost.

Both approaches start at 3 kilometers away. The straight approach simply follows a straight descent with a 3◦

glideslope. The curved approach has two lateral deviations of around 200 meters and a glideslope varying

between 4.5◦ and 5.5◦ . The two approaches have a sinusoidal phase in the lateral deviation and altitude to

assess how the system deals with realistic aircraft movements.

Methodology

The distributions of neural network errors used are those from Table 11, holding under the assumptions

discussed therein.

For the two approaches, the following are compared:

• No flter (raw neural network output, i.e. pt = A(γ̂t)). This is expected to be correct on average (e.g.
over many runs), but with large maximum errors/standard deviations and noisy on single runs.

• Moving average flter on γ̂t as a simple flter that does not take into account the aircraft movement
model. This is expected to present some lag and issues with quick changes or high measurement noises.

• Kalman flter, namely the flter described in Section 5.5.2.

For each, both single runs (one sampling of errors) and the statistics over multiple runs (mean, standard

deviation, minimum/maximum) are computed.

The estimated quantities are superposed to the “ground truth plots” from Figure 68. In multiple runs, dashed

lines denote means, dotted lines minimums and maximums, and the shaded areas encompass the mean

plus/minus the standard deviation.

For simplicity, the uncertainty estimated by the flter is not shown. A complete analysis should investigate this

as well, ensuring that the di� erence between the estimated and the true quantities is always within the

predicted uncertainties.

Unfltered

Figure 69 shows the unfltered neural network outputs over 1 run and 20 runs. The � parameters are

estimated with little bias and fairly low standard deviation. However, as already seen in the sensitivity analysis

(Section 8.5.1), these errors translate to fairly high noise in the pose estimates. A clear di� erence is visible in

the error propagation through the system for di� erent approaches: while lateral deviation and altitude have

fairly low errors/noise for the straight approach, they have very high errors/noise for the curved approach due

to the pose dependence of the transformation of the noise.

Moving average

Figure 70 shows the neural network outputs fltered with a simple Hull moving average over t = 2 seconds.
The Hull moving average

� √ �
HMA(·) = WMA 2WMA(·, t/2) − WMA(·, t), t ,

where WMA(·, t) denotes a (backward) weighted moving average with a window of size t, was chosen instead
of the moving average to reduce the lag of a plain moving average estimator. Again, results are shown for 1

run and 20 runs for both approaches. This simple flter reduces the noise of the system output when

compared to the unfltered output. For the given approaches and noise, no systematic deviations or lag are

detectable. For the curved approach, the Hull moving average shows some outliers in the output signal for the

glide slope, the altitude, and the distance.

119 Daedalean / FAA VLS Project Report — Chapter 8

(a) Straight approach

(b) Curved approach

Figure 68: Sample random approaches. The trajectories in space are shown in the top-left plots. The bottom

plots the quantities that the system will output over time (from left to right): lateral deviation (degrees), glide

slope (degrees; with a corridor of 0.1◦) and distance/lateral deviation/altitude (meters). The remaining two

plots (top right) display the corresponding six � parameters over time that should be estimated by the neural

network.

120 Daedalean / FAA VLS Project Report — Chapter 8

(a) One run of straight approach (b) 20 runs of straight approach

(c) One run of curved approach (d) 20 runs of curved approach

Figure 69: Outputs with unfltered neural network estimates.

(a) One run of straight approach (b) 20 runs of straight approach

(c) One run of curved approach (d) 20 runs of curved approach

Figure 70: Outputs with neural network estimates fltered with a Hull moving average.

121 Daedalean / FAA VLS Project Report — Chapter 8

(a) One run of straight approach (b) 20 runs of straight approach

(c) One run of curved approach (d) 20 runs of curved approach

Figure 71: Outputs with Kalman flter.

Kalman flter

Finally, Figure 71 shows the outputs with the Kalman flter applied to 1 run and 20 runs. This corresponds to

the flter used in the VLS (see Section 5.5.2). A large reduction of the output noise takes place and none of

the output quantities show large outlier values for either approach.

Full analysis

As mentioned above, a complete analysis would run these simulations (for the Kalman flter) on a large

number of approaches and derive performance statistics (mean, standard deviation, maximum, uncertainty

accuracy etc.) to verify system requirements.

8.7 Runway tracking

The Runway detector component (see Section 5.1) is the combination of a neural network with a tracker (see

Section 5.5.1). Its role is to correctly identify and consistently track runways in the feld of view. This is

fundamental as this determines the input for the rest of the system (Runway extractor).

This section analyzes how properties of the Runway detctor neural network translate to performance

properties (as defned below) of the full Runway detector component through the tracker, similarly to the

analysis in [CoDANN21, Section 6.2].

8.7.1 Runway detector parameters

Like most classifcation/detection systems, the Runway detector neural network has a confdence parameter

θ ∈ (0, 1) that controls the natural trade-o� between false positives (precision) and false negatives (recall).

122 Daedalean / FAA VLS Project Report — Chapter 8

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

p

Precision
Recall

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

0.0

0.2

0.4

0.6

0.8

Figure 72: Left: Precision and recall of a binary classifer depending on the threshold θ ∈ (0, 1). When θ = 1,
there is perfect precision and zero recall, and vice-versa when θ = 0. Right: Corresponding precision-recall
curve, where the color represents the threshold θ.

For a fxed model, each choice of θ will determine the probability of false positives and negatives (see
Figure 72):

pFP,nn(θ) Probability that the network detects an object that is not a

runway

pFN,nn(θ) Probability that the network does not detect a runway

As in Section 8.3.1, performance guarantees could be obtained on these two quantities (for any choice of θ)

through generalization.

The false positive and false negative probabilities in turn determine the following quantities that describe the

performance of the whole Runway detector component. This derivation will be carried out in the following

paragraphs.

pFP,det(θ) Probability that the network detects an object that is not a

runway

pFN,det(θ, N) Probability that the detector does not output a crop of a

runway when a runway is in the camera view during N frames

punlock,det(θ, N) Probability that the detector loses track of a runway after

tracking it for N frames

E[tinterrupt,det(θ)] Mean time between track interruptions at the detector

E[tinit,det(θ)] Mean detector initialization delay

The choice of the threshold θ ∈ (0, 1) is made based on the target values for these parameters. The
probabilities and means above should be kept as low as possible, to prevent respectively false positives, false

negatives, track losses/interruption and initialization.

8.7.2 Computations of probabilities

The behaviour of the neural network (i.e. precision and recall) is assumed independent between frames for

simplicity: see [CoDANN21, Section 5.3.2] for a discussion. Correlations would be added to the analysis in a

123 Daedalean / FAA VLS Project Report — Chapter 8

complete assessment. See also Section 8.6.1.

The computations below should be seen as an illustration of how the neural network interacts with the tracker

(traditional software), but in a full analysis, some of the more complex assumptions might have to be verifed

through Monte Carlo simulations as in Section 8.6.

False positives

According to the description in Section 5.5.1, to establish a lock on an object that is not the target runway,

the neural network component must produce nlock consecutive detections with suÿciently high confdence that

get associated into a track.

There are two cases:

• The false positive track corresponds to a true object (2D or 3D) misidentifed for a runway, for example
a stretch of road. This is an example of systematic errors that should be eliminated if the W-shaped

process is followed correctly (in particular correct identifcation of the input space and adequate

training/evaluation data).

• The false positives are spurious but align by chance along a trajectory consistent for the 2D Kalman
flter. Assuming the centers of spurious detections are uniformly distributed in the image and

independent (otherwise the previous case would apply), the probability of such a false positive with all

centers in a small region of normalized area A ∈ (0, 1) is

≤ (ApFP,nn(θ))
nlock .

This can be kept for a relatively low A and false positive probability. Without the tracker, the false
positive probability would be pFP,nn(θ) at each frame.

The false positives that occurred during the fight tests described in Section 4.2 were of the frst type, mostly

because of a lack of data and a chosen trade-o� favoring the avoidance of false negatives.

False negatives

A runway present in the feld of view during N frames is completely missed if there are no nlock consecutive
detections. The probability of this event is pFN,det(θ, N) and can be computed explicitly as a function of the
neural network characteristics pFP,nn(θ), pFN,nn(θ).

Figure 73 shows that the probability of missing a runway is small for the expected low false negative

probabilities and it decreases signifcantly the longer the runway remains in the camera view.

Track interruptions

A tracked runway is (temporarily) lost if the detector subsystem reaches its unlocking threshold nunlock, as

described in Section 5.5.1.

The probability punlock,det(θ, N) of observing a lock interruption during N frames can be computed similarly as
a function of the neural network characteristics pFP,nn(θ), pFN,nn(θ). It increases with the amount of frames N
and decreases with nunlock.

For a track spanning 5 minutes and pFN(δc) = 0.1, this probability is ≈ 0.016 for nunlock = 5 and ≈ 1.61 · 10−7
for nunlock = 10. Naturally, allowing a longer extrapolation period reduces this failure probability.

The mean time between lock interruptions E[tinterrupt,det(θ)] is illustrated in Figure 74, as a function of nunlock
and pFN(θ).

Initialization delay

The mean initialization delay in number of frames is given by

(1 − pFN,nn(θ))−nlock − 1
E[tinit,det(θ)] = ,

pFN,nn(θ)

approaching nlock as the probability of false negatives at the neural network tends to 0.

For instance, for pFN,nn(θ) = 0.05 and nlock = 5, the mean delay is 5.84 frames, or 973 milliseconds at 6 fps.

https://pFN,nn(�)=0.05

124 Daedalean / FAA VLS Project Report — Chapter 8

0.00 0.05 0.10 0.15 0.20 0.25 0.30
10−11

10−9

10−7

10−5

10−3

10−1

P
ro
b
ab
ili
ty

 o
f
m
is
si
n
g
a
ru
n
w
ay

 v
is
ib
le

 i
n

 N
 f
ra
m
es N = 50

N = 100

N = 150

N = 200

pFN (�)

Figure 73: Probability of missing a runway that is in the camera view for N frames for various false positive
probabilities. The detector and the neural network are assumed to have equal probabilities. Note that the range

N = [50, 200] translates to [8.3, 33.3] seconds at the system framerate of 6 Hz.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

103

106

109

1012

1015

1018

M
ea
n

 t
im

e
b
et
w
ee
n

 l
o
ck

 i
n
te
ru
p
ti
on

s
[s
ec
on

d
s] nunlock = 3

nunlock = 5

nunlock = 7

nunlock = 9

pFN (�)

Figure 74: Mean time between lock interruptions due to the neural network (assuming a processing rate of six

frames per second).

References

[ABOX]

[AC150/5340-1M]

[AIR6988]

[Aro+18]

[Asa+20]

[BLZ+19]

[Che+18]

[CoDANN20]

[CoDANN21]

[DD09]

[Dev+21]

[DR17]

[EAS20a]

[EAS20b]

ABOX-5000G Specifcations. Sintrones. May 2021.

AC 150/5340-1M - Standards for Airport Markings. Advisory Circular. FAA, May

2019.

SAE International. Artifcial Intelligence in Aeronautical Systems: Statement of

Concerns. Tech. rep. AIR6988. Apr. 2021.

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. “Stronger generalization

bounds for deep nets via a compression approach”. In: 35th International Conference

on Machine Learning (ICML). Ed. by Andreas Krause and Jennifer Dy. International

Machine Learning Society (IMLS), 2018, pp. 390–418.

Erfan Asaadi et al. “Assured Integration of Machine Learning-based Autonomy on

Aviation Platforms”. In: 2020 AIAA/IEEE 39th Digital Avionics Systems Conference

(DASC). IEEE. 2020, pp. 1–10.

Junjie Bai, Fang Lu, Ke Zhang, et al. ONNX: Open Neural Network Exchange. 2019.

URL: https://onnx.ai/.

Tianqi Chen et al. “TVM: An Automated End-to-End Optimizing Compiler for Deep

Learning”. In: 13th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 18). Carlsbad, CA: USENIX Association, 2018, pp. 578–594.

URL: https://www.usenix.org/conference/osdi18/presentation/chen.

EASA and Daedalean. Concepts of Design Assurance for Neural Networks. Tech. rep.

2020. URL: https://www.easa.europa.eu/sites/default/files/dfu/EASA-

DDLN-Concepts-of-Design-Assurance-for-Neural-Networks-CoDANN.pdf.

EASA and Daedalean. Concepts of Design Assurance for Neural Networks (CoDANN)

II. Tech. rep. May 2021. URL: https://www.easa.europa.eu/sites/default/
files/dfu/ddln˙easa˙codann2˙public.pdf.

Armen Der Kiureghian and Ove Ditlevsen. “Aleatory or epistemic? Does it matter?”

In: Structural Safety 31.2 (2009), pp. 105–112.

S. K. Devitt et al. Robotics Roadmap for Australia V2 – Trust and Safety.

Forthcoming. 2021.

Gintare Karolina Dziugaite and Daniel M. Roy. “Computing Nonvacuous

Generalization Bounds for Deep (Stochastic) Neural Networks with Many More

Parameters than Training Data”. In: Proceedings of the Thirty-Third Conference on

Uncertainty in Artifcial Intelligence, UAI 2017, Sydney, Australia, August 11-15,

2017. 2017.

EASA. Annual Safety Review 2020. Tech. rep. 2020. URL:

https://www.easa.europa.eu/sites/default/files/dfu/easa˙asr˙2020.pdf.

EASA. Artifcial Intelligence Roadmap: A human-centric approach to AI in aviation.

Feb. 2020. URL:

https://www.easa.europa.eu/sites/default/files/dfu/EASA-AI-Roadmap-

v1.0.pdf.

125

https://onnx.ai/
https://www.usenix.org/conference/osdi18/presentation/chen
https://www.easa.europa.eu/sites/default/files/dfu/EASA-DDLN-Concepts-of-Design-Assurance-for-Neural-Networks-CoDANN.pdf
https://www.easa.europa.eu/sites/default/files/dfu/EASA-DDLN-Concepts-of-Design-Assurance-for-Neural-Networks-CoDANN.pdf
https://www.easa.europa.eu/sites/default/files/dfu/ddln_easa_codann2_public.pdf
https://www.easa.europa.eu/sites/default/files/dfu/ddln_easa_codann2_public.pdf
https://www.easa.europa.eu/sites/default/files/dfu/easa_asr_2020.pdf
https://www.easa.europa.eu/sites/default/files/dfu/EASA-AI-Roadmap-v1.0.pdf
https://www.easa.europa.eu/sites/default/files/dfu/EASA-AI-Roadmap-v1.0.pdf

126 Daedalean / FAA VLS Project Report — Chapter 8

[EAS21] EASA. First usable guidance for Level 1 machine learning applications. Concept paper

for consultation. Apr. 2021. URL:

https://www.easa.europa.eu/newsroom-and-events/news/easa-releases-

consultation-its-first-usable-guidance-level-1-machine.

[ED-12C/DO-178C] ED-12C/DO-178C, Software Considerations in Airborne Systems and Equipment

Certifcation. Standard. EUROCAE/RTCA, Jan. 2011.

[ED-216/DO-331] ED-216/DO-331, Model-Based Development and Verifcation Supplement to

DO-178C and DO-278A. Standard. EUROCAE/RTCA, Jan. 2011.

[ED-76A/DO-200B] ED-76A/DO-200B, Standards for Processing Aeronautical Data. Standard.

EUROCAE/RTCA, June 2015.

[ED-79A/ARP4754A] ED-79A/ARP4754A, Guidelines for Development of Civil Aircraft and Systems.

Standard. EUROCAE/SAE, Dec. 2011.

[ED-80/DO-254] ED-80/DO-254, Design Assurance Guidance For Airborne Electronic Hardware.

Standard. EUROCAE/RTCA, Apr. 2000.

[EGTA] Ethics and Guidelines on Trustworthy AI. Tech. rep. European Commission’s

High-Level Expert Group on Artifcial Intelligence, Apr. 2019.

[ESL01] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical

Learning. Springer Series in Statistics. Springer, 2001.

[For+20] H°akan Forsberg, Joakim Lindén, Johan Hjorth, Torbjörn M°anefjord, and

Masoud Daneshtalab. “Challenges in Using Neural Networks in Safety-Critical

Applications”. In: AIAA/IEEE 39th Digital Avionics Systems Conference (DASC).

2020, pp. 1–7.

[FWZ13] Jianxin Feng, Zidong Wang, and Ming Zeng. “Distributed weighted robust Kalman

flter fusion for uncertain systems with autocorrelated and cross-correlated noises”. In:

Information Fusion - INFFUS 14 (2013).

[HG17] Dan Hendrycks and Kevin Gimpel. “A Baseline for Detecting Misclassifed and

Out-of-Distribution Examples in Neural Networks”. In: Proceedings of International

Conference on Learning Representations (2017).

[How+17] Andrew G. Howard et al. “MobileNets: Eÿcient Convolutional Neural Networks for

Mobile Vision Applications”. Unpublished. 2017. URL:

http://arxiv.org/abs/1704.04861.

[HW21] Eyke Hüllermeier and Willem Waegeman. “Aleatoric and epistemic uncertainty in

machine learning: an introduction to concepts and methods”. In: Machine Learning

110.3 (Mar. 2021), pp. 457–506.

[ImageNet] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In:

International Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211–252.

[ISO2859] Sampling procedures for inspection by attributes. Standard. International Organization

for Standardization, Nov. 1999.

[ISO98-3] ISO/IEC GUIDE 98-3:2008. Uncertainty of measurement – Part 3: Guide to the

expression of uncertainty in measurement. Standard. International Organization for

Standardization, Nov. 2008.

[KB15] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.

In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego,

CA, USA, May 7-9, 2015, Conference Track Proceedings. Ed. by Yoshua Bengio and

Yann LeCun. 2015.

https://www.easa.europa.eu/newsroom-and-events/news/easa-releases-consultation-its-first-usable-guidance-level-1-machine
https://www.easa.europa.eu/newsroom-and-events/news/easa-releases-consultation-its-first-usable-guidance-level-1-machine
http://arxiv.org/abs/1704.04861

127 Daedalean / FAA VLS Project Report — Chapter 8

[KG17] Alex Kendall and Yarin Gal. “What uncertainties do we need in Bayesian Deep

Learning for Computer Vision?” In: Advances in Neural Information Processing

Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc., 2017.

[KKB18] Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. “Generalization in Deep

Learning”. In: Mathematics of Deep Learning. Cambridge University Press, 2018.

[LH17] Ilya Loshchilov and Frank Hutter. “SGDR: Stochastic Gradient Descent with Warm

Restarts”. In: International Conference on Learning Representations (ICLR). 2017.

[LJ03] X. Rong Li and V. P. Jilkov. “Survey of maneuvering target tracking. Part I: Dynamic

models”. In: IEEE Transactions on Aerospace and Electronic Systems 39.4 (2003).

[LLS18] Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. “Enhancing the reliability of

out-of-distribution image detection in neural networks”. In: International Conference

on Learning Representations (ICLR). Vancouver, Canada, 2018.

[LPB17] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. “Simple and

Scalable Predictive Uncertainty Estimation Using Deep Ensembles”. In: NIPS’17.

Long Beach, California, USA: Curran Associates Inc., 2017, pp. 6405–6416.

[Mar+15] Martin Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous

Systems. 2015. URL: http://tensorflow.org/.

[NBS18] Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. “A PAC-Bayesian

Approach to Spectrally-Normalized Margin Bounds for Neural Networks”. In: 6th

International Conference on Learning Representations (ICLR). Vancouver, BC,

Canada, 2018.

[Nic+08] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. “Scalable Parallel

Programming with CUDA: Is CUDA the Parallel Programming Model That

Application Developers Have Been Waiting For?” In: Queue 6.2 (Mar. 2008),

pp. 40–53.

[NTSBARG9801] National Transportation Safety Board. Annual Review of Aircraft Accident Data: U.S.

General Aviation calendar year 1995. Tech. rep. NTSB/ARG-98/01. 1998.

[NW94] D.A. Nix and A.S. Weigend. “Estimating the mean and variance of the target

probability distribution”. In: Proceedings of 1994 IEEE International Conference on

Neural Networks (ICNN’94). Vol. 1. 1994, pp. 55–60.

[Pas+19] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning

Library”. In: Advances in Neural Information Processing Systems 32. Ed. by

H. Wallach et al. Curran Associates, Inc., 2019, pp. 8024–8035.

[PB96] José Pinheiro and Douglas Bates. “Unconstrained parametrizations for

variance-covariance matrices”. In: Statistics and Computing 6 (1996).

[Pea+18] Tim Pearce, Mohamed Zaki, Alexandra Brintrup, and Andy Neely. “High-Quality

Prediction Intervals for Deep Learning: A Distribution-Free, Ensembled Approach”. In:

Proceedings of the 35th International Conference on Machine Learning. Vol. 80.

Proceedings of Machine Learning Research (PMLR). Stockholm, Sweden, 2018.

[Reg2018/1139] Regulation (EU) 2018/1139. European Parliament and of the Council of 4 July 2018,

Aug. 2018.

[RFC1321] R. Rivest. The MD5 Message-Digest Algorithm. Tech. rep. MIT Laboratory for

Computer Science and RSA Data Security, Inc., Apr. 1992.

[Sch+20] Gesina Schwalbe et al. “Structuring the Safety Argumentation for Deep Neural

Network Based Perception in Automotive Applications”. In: Computer Safety,

Reliability, and Security. SAFECOMP 2020 Workshops. Ed. by António Casimiro,

Frank Ortmeier, Erwin Schoitsch, Friedemann Bitsch, and Pedro Ferreira. Springer

International Publishing, 2020, pp. 383–394.

http://tensorflow.org/

128 Daedalean / FAA VLS Project Report — Chapter

[Sim06] Dan Simon. Optimal State Estimation: Kalman, H Infnity, and Nonlinear Approaches.

Wiley-Interscience, 2006.

[Sok97] A. Sokal. “Monte Carlo Methods in Statistical Mechanics: Foundations and New

Algorithms”. In: Functional Integration: Basics and Applications. Ed. by

Cecile DeWitt-Morette, Pierre Cartier, and Antoine Folacci. Springer US, 1997,

pp. 131–192.

[TC-16/4] DOT/FAA/TC-16/4: Verifcation of Adaptive Systems. Report. The U.S. Federal

Aviation Administration, Apr. 2016.

[UL 4600] Edge Case Research. Standard for Safety for the Evaluation of Autonomous Vehicles

and Other Products. Standard. Underwriter Laboratories, Apr. 2020.

[Wor21] DEEL Certifcation Workgroup. Machine Learning in Certifed Systems. Whitepaper.

IRT Saint Exupéry, Mar. 2021.

[Xu+17] Chi Xu, Lilian Zhang, Li Cheng, and Reinhard Koch. “Pose Estimation from Line

Correspondences: A Complete Analysis and a Series of Solutions”. In: IEEE

Transactions on Pattern Analysis and Machine Intelligence 39.6 (2017),

pp. 1209–1222.

[Zha+17] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.

“Understanding deep learning requires rethinking generalization”. In: 5th International

Conference on Learning Representations (ICLR). Toulon, France, 2017.

[Zho+19] Wenda Zhou, Victor Veitch, Morgane Austern, Ryan P. Adams, and Peter Orbanz.

“Non-Vacuous Generalization Bounds at the ImageNet Scale: A PAC-Bayesian

Compression Approach”. In: International Conference on Learning Representations

(ICLR). New Orleans, Louisiana, USA, 2019.

A Flight test results

Figure 75 to Figure 85 show the telemetry from each approach during the fight test not shown in Section 4.

The reader should refer to Section 8.1 for a description of failure modes.

129

130 Daedalean / FAA VLS Project Report — Chapter 8

Figure 75: Flight 1: Approaches 1-2. Trained runway (X26).

131 Daedalean / FAA VLS Project Report — Chapter 8

Figure 76: Flight 1: Approaches 3-4. Trained runway X26-23. In approach 4, due to low processing rate on the

experimental hardware (see Section 6.6), the VLS momentarily lost acquisition of the runway and re-acquired

it after a few seconds. See Item 3 in Section 8.1.

132 Daedalean / FAA VLS Project Report — Chapter 8

Figure 77: Flight 1: Approaches 5-6. Untrained runway KVRB-12L.

�

133 Daedalean / FAA VLS Project Report — Chapter 8

Figure 78: Flight 1: Approaches 7-8. Untrained runway KVRB-12L. Approach 8 shows an example of erroneous

height and distance estimates due to incorrect runway size in the database. The correctness of the approach

angles is una ected as they are scale independent, and in general angle estimates are easier than absolute

distance estimates (see Figure 71).

134 Daedalean / FAA VLS Project Report — Chapter 8

Figure 79: Flight 1: Approaches 9-10. Untrained runway KVRB-12L. In approach 9, the system failed to

establish track on the target runway while multiple runways where on sight. See Item 2 in Section 8.1.. The

system detected the failure and did not provide guidance. In approach 10, the discrepancy in absolute height

and distance is similar to Figure 78.

135 Daedalean / FAA VLS Project Report — Chapter 8

Figure 80: Flight 1: Approach 11. Untrained runway KVRB-12L.

136 Daedalean / FAA VLS Project Report — Chapter 8

Figure 81: Flight 2: Approaches 1-2. Runway KVRB-12R. In approach 2, due to aggressive maneuvering and

limited processing rate, the system lost track of the runway as in Figure 76. The Kalman flter extrapolated the

plane position until the lock on the runway was reacquired. See Item 3 in Section 8.1.

137 Daedalean / FAA VLS Project Report — Chapter 8

Figure 82: Flight 2: Approaches 3-4. Runway KVRB-12R. Approach 4 shows the same failure mode as

Figure 81.

138 Daedalean / FAA VLS Project Report — Chapter 8

Figure 83: Flight 2: Approaches 5-6. Runway KVRB-12R. In approach 6, a track was established outside the

runway. See Item 1 in Section 8.1.. While the demo system did not feature OOD detection and provided an

erroneous guidance, the current system easily classifes this situation and no guidance is provided.

139 Daedalean / FAA VLS Project Report — Chapter 8

Figure 84: Flight 2: Approaches 7-8. Runway KVRB-12R. In approach 8, there was a failure similar to approach

6 in Figure 83.

140 Daedalean / FAA VLS Project Report — Chapter 8

Figure 85: Flight 2: Approach 9. Runway KVRB-12R.

	Cover
	Abstract
	Key Words
	Contents
	Figures
	Tables
	Acronyms
	Executive summary

Accessibility Report

		Filename:

		Neural Network_tc21-48.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found problems which may prevent the document from being fully accessible.

		Needs manual check: 2

		Passed manually: 1

		Failed manually: 0

		Skipped: 1

		Passed: 21

		Failed: 7

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Needs manual check		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Failed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Failed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Needs manual check		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Failed		Figures require alternate text

		Nested alternate text		Failed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Failed		Tables should have headers

		Regularity		Failed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Failed		Appropriate nesting

Back to Top

